Skip to main content
Top
Published in: Wireless Personal Communications 3/2022

29-10-2021

Performance Evaluation of Various Dispersion Compensation Modules

Authors: Shivin Aggarwal, Nidhi Garg, Gurpreet Kaur

Published in: Wireless Personal Communications | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pulse broadening is prominent performance degrading factor which limits total speed and distance coverage of optical communication systems (OCS). In order to compensate the effects of pulse broadening, two techniques are reported widely such as dispersion compensation fiber (DCF), and Fiber Bragg Gratings (FBGs). However, DCF is expensive and FBGs are shown less efficiency of pulse width reduction (PWR). Therefore, a cost effective and highly efficient PWR module is required to cope up with pulse broadening issue. In this research article, various PWR techniques are considered and assessed to investigate an economical method having significant PWR. In this proposed work different chirp functions are applied to FBG, DCF, combined technique using DCF with optimized-linearly-chirped-tanh FBG and two FBGs along with a DCF module. System is evaluated and studied with a 10 GB/s. optical link over a 100 km SMF-28 optical fiber. FBG with square root chirping, cube root chirping, exhibit 72.41%, 65.5% PWRE respectively. Linear chirping performed best out of three chirping profiles of FBG with the PWRE of 75.86%. DCF alone yields an improved efficiency of 93.7%; however, the use of DCF makes system costly. Further the joint method of DCF and FBG is analyzed and enhanced the PWRP to 95.8% (approx. 96%) and provides the good pulse shape with economical cost. Finally, two linearly chirped and tanh apodized FBGs are joined with a DCF and the results achieved are 97.9% (approx. 98%) PWRE with low cost. FBG + FBG + DCF modules is found out to be best performing in terms of efficiency and also provide low cost. The sequence of performance of different modules inquired is given as: FBG + FBG + DCF > FBG + DCF > DCF > Linearly chirped FBG > Square root FBG > Cube root chirped FBG.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bobrovs, V., Porins, J., & Ivanovs, G. (2007). Influence of nonlinear optical effects on the NRZ and RZ modulation. Elektronika ir Elektrotechnika, 55–58. Bobrovs, V., Porins, J., & Ivanovs, G. (2007). Influence of nonlinear optical effects on the NRZ and RZ modulation. Elektronika ir Elektrotechnika, 55–58.
2.
go back to reference Garcia-Perez, A., Andrade-Lucio, J. A., Ibarra-Manzano, O. G., & Alvarado-Mendez, E. (2006). Efficient modulation formats for high bit-rate fiber transmission 16(2), 17–26. Garcia-Perez, A., Andrade-Lucio, J. A., Ibarra-Manzano, O. G., & Alvarado-Mendez, E. (2006). Efficient modulation formats for high bit-rate fiber transmission 16(2), 17–26.
3.
go back to reference Senior, J. M., & Jamro, M. Y. (2009) Optical fiber communications: Principles and practice. Pearson Education. Senior, J. M., & Jamro, M. Y. (2009) Optical fiber communications: Principles and practice. Pearson Education.
4.
go back to reference Yu, C. P., Liou, J. H., Huang, S. S., & Chang, H. C. (2008). Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation. Optics Express, 16, 4443–4451.CrossRef Yu, C. P., Liou, J. H., Huang, S. S., & Chang, H. C. (2008). Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation. Optics Express, 16, 4443–4451.CrossRef
5.
go back to reference Thyagarajan, K. (2002). Linear and nonlinear propagation effects in optical fibers. Optical Solitons, springer, Lecture Notes in Physics, 613, 33–70.CrossRef Thyagarajan, K. (2002). Linear and nonlinear propagation effects in optical fibers. Optical Solitons, springer, Lecture Notes in Physics, 613, 33–70.CrossRef
6.
go back to reference Alwayn, V. (2004). Fiber-optic technologies. Cisco Network Technology. Alwayn, V. (2004). Fiber-optic technologies. Cisco Network Technology.
7.
go back to reference Nehra, M., & Kedia, D. (2018). Investigation and suppression of fiber nonlinearities using injection- locking in OFDM-WDM system. International Journal of Optics, 2018, 1–6 (Article ID 8690278). Nehra, M., & Kedia, D. (2018). Investigation and suppression of fiber nonlinearities using injection- locking in OFDM-WDM system. International Journal of Optics, 2018, 1–6 (Article ID 8690278).
8.
go back to reference Singh, M. (2015). Analyzing the effect of channel spacing and chromatic dispersion coefficient on FWM in optical WDM system. International Journal of Signal Processing, 8(11), 99–110. Singh, M. (2015). Analyzing the effect of channel spacing and chromatic dispersion coefficient on FWM in optical WDM system. International Journal of Signal Processing, 8(11), 99–110.
9.
go back to reference Chakkour, M., Aghzout, O., Ait Ahmed, B., Chaoui, F., & El, M. (2017). Enhancements using FBG and EDFA-wavelength division multiplexing optical transmission system. International Journal of Optics, 2017. Chakkour, M., Aghzout, O., Ait Ahmed, B., Chaoui, F., & El, M. (2017). Enhancements using FBG and EDFA-wavelength division multiplexing optical transmission system. International Journal of Optics, 2017.
10.
go back to reference Pande, K., & Pal, B. P. (2003). Design optimization of a dualcore dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers. Applied Optics, 42, 3785–3791.CrossRef Pande, K., & Pal, B. P. (2003). Design optimization of a dualcore dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers. Applied Optics, 42, 3785–3791.CrossRef
11.
go back to reference Auguste, J. L., Jindal, R., Blondy, J. M., Clapeau, M., Marcou, J., Dussardier, B., Monnom, G., Ostrowsky, D. B., Pal, B. P., & Thyagarajan, K. (2000). -1800 ps/(nm·km) chromatic dispersion at 1.55 μm in dual concentric core fibre. Electronic Letters, 36, 1689–1691. Auguste, J. L., Jindal, R., Blondy, J. M., Clapeau, M., Marcou, J., Dussardier, B., Monnom, G., Ostrowsky, D. B., Pal, B. P., & Thyagarajan, K. (2000). -1800 ps/(nm·km) chromatic dispersion at 1.55 μm in dual concentric core fibre. Electronic Letters, 36, 1689–1691.
12.
go back to reference Nielsen, L. G., Knudsen, S. N., Edvold, B., Veng, T., Magnussen, D., Larsen, C. C., & Damsgaard, H. (2000). Dispersion compensating fibers. Optical Fiber Technology, 6, 164–180.CrossRef Nielsen, L. G., Knudsen, S. N., Edvold, B., Veng, T., Magnussen, D., Larsen, C. C., & Damsgaard, H. (2000). Dispersion compensating fibers. Optical Fiber Technology, 6, 164–180.CrossRef
13.
go back to reference Wu, Q., Chu, P., & Chan, H. (2006). General design approach to multichannel fiber Bragg grating. Journal of Lightwave Technology, 24, 4433–4454.CrossRef Wu, Q., Chu, P., & Chan, H. (2006). General design approach to multichannel fiber Bragg grating. Journal of Lightwave Technology, 24, 4433–4454.CrossRef
14.
go back to reference Takiguchi, K., Okamato, K., & Moriwaki, K. (1994). Planar lightwave circuit dispersion equalizer. IEEE Photonics Technology Letters, 6, 86–88.CrossRef Takiguchi, K., Okamato, K., & Moriwaki, K. (1994). Planar lightwave circuit dispersion equalizer. IEEE Photonics Technology Letters, 6, 86–88.CrossRef
15.
go back to reference Gnauck, A. H., Garrett, L. D., Danziger, Y., Levy, U., & Tur, M. (2000). Dispersion and dispersion- slope compensation of NZDSF over the entire C band using higher-order-mode fibre. Electronics Letters, 36, 1946–1947.CrossRef Gnauck, A. H., Garrett, L. D., Danziger, Y., Levy, U., & Tur, M. (2000). Dispersion and dispersion- slope compensation of NZDSF over the entire C band using higher-order-mode fibre. Electronics Letters, 36, 1946–1947.CrossRef
16.
go back to reference Sharma, A., Singh, I., & Bhattcharya, S. (2018). Performance analysis of dispersion compensation using ideal fiber gratting in a 100 Gbps single channal optical system. IJESRT. Sharma, A., Singh, I., & Bhattcharya, S. (2018). Performance analysis of dispersion compensation using ideal fiber gratting in a 100 Gbps single channal optical system. IJESRT.
17.
go back to reference Litchinitser, N. M., Eggleton, B. J., & Patterson, D. B. (1997). Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression. Journal of Lightwave Technology, 15(8), 1303–1313.CrossRef Litchinitser, N. M., Eggleton, B. J., & Patterson, D. B. (1997). Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression. Journal of Lightwave Technology, 15(8), 1303–1313.CrossRef
18.
go back to reference Rebola, J. L., & Cartazo, A. V. T. (2002). Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems. Journal of Lightwave Technology, 20(8), 1537–1544.CrossRef Rebola, J. L., & Cartazo, A. V. T. (2002). Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems. Journal of Lightwave Technology, 20(8), 1537–1544.CrossRef
19.
go back to reference Shahoei, H., Li, M., & Yao, J. (2011). Continuously tunable time delay using an optically pumped linear chirped fiber Bragg grating. Journal of Lightwave Technology, 29, 1465–1472.CrossRef Shahoei, H., Li, M., & Yao, J. (2011). Continuously tunable time delay using an optically pumped linear chirped fiber Bragg grating. Journal of Lightwave Technology, 29, 1465–1472.CrossRef
20.
go back to reference Mohammed, N. A., Ali, T. A., & Aly, M. H. (2014). Evaluation and performance enhancement for accurate FBG temperature sensor measurement with different apodization profiles in single and quasi-distributed DWDM systems. Optics and Lasers in Engineering, 55, 22–34.CrossRef Mohammed, N. A., Ali, T. A., & Aly, M. H. (2014). Evaluation and performance enhancement for accurate FBG temperature sensor measurement with different apodization profiles in single and quasi-distributed DWDM systems. Optics and Lasers in Engineering, 55, 22–34.CrossRef
21.
go back to reference Wang, C., & Yao, J. (2009). Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating. IEEE Photonics Technology Letters, 21, 1375–1377.CrossRef Wang, C., & Yao, J. (2009). Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating. IEEE Photonics Technology Letters, 21, 1375–1377.CrossRef
22.
go back to reference Cheng, X., Tse, C. H., Shum, P., Wu, R. F., Tang, M., Tan, W. C., & Zhang, J. (2008). All-fiber Q- switched erbium-doped fiber ring laser using phase-shifted fiber Bragg grating. Journal of Lightwave Technology, 26, 945–951.CrossRef Cheng, X., Tse, C. H., Shum, P., Wu, R. F., Tang, M., Tan, W. C., & Zhang, J. (2008). All-fiber Q- switched erbium-doped fiber ring laser using phase-shifted fiber Bragg grating. Journal of Lightwave Technology, 26, 945–951.CrossRef
23.
go back to reference Gong, Y., Liu, X., Wang, L., Hu, X., Lin, A., & Zhao, W. (2009). Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation. Journal of Lightwave Technology, 27, 3235–3240.CrossRef Gong, Y., Liu, X., Wang, L., Hu, X., Lin, A., & Zhao, W. (2009). Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation. Journal of Lightwave Technology, 27, 3235–3240.CrossRef
24.
go back to reference Li, Q., Wai, P., Senthilnathan, K., & Nakkeeran, K. (2011). Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations. Journal of Lightwave Technology, 29, 1293–1305.CrossRef Li, Q., Wai, P., Senthilnathan, K., & Nakkeeran, K. (2011). Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations. Journal of Lightwave Technology, 29, 1293–1305.CrossRef
25.
go back to reference Wakabayashi, S., Baba, A., Itou, A., & Adachi, J. (2008). Design and fabrication of an apodization profile in linearly chirped fiber Bragg gratings for wideband >35 nm and compact tunable dispersion compensator. Journal Optical Society of America, B25, 210–217. Wakabayashi, S., Baba, A., Itou, A., & Adachi, J. (2008). Design and fabrication of an apodization profile in linearly chirped fiber Bragg gratings for wideband >35 nm and compact tunable dispersion compensator. Journal Optical Society of America, B25, 210–217.
26.
go back to reference Romero, R., Frazão, O., Floreani, F., Zhang, L., Marques, P. V. S., & Salgado, H. M. (2005) Chirped fibre Bragg grating based multiplexer and demultiplexer for DWDM applications. Optics and Lasers in Engineering, 43, 987–994. Romero, R., Frazão, O., Floreani, F., Zhang, L., Marques, P. V. S., & Salgado, H. M. (2005) Chirped fibre Bragg grating based multiplexer and demultiplexer for DWDM applications. Optics and Lasers in Engineering, 43, 987–994.
27.
go back to reference Gualda, E. J., Gomez-Pavon, L. C., & Torres, J. P. (2005). Compensation of third-order dispersion in a 100 Gb/s single channel system with in-line fibre Bragg gratings. Journal of Modern Optics, 52, 1197–1206. Gualda, E. J., Gomez-Pavon, L. C., & Torres, J. P. (2005). Compensation of third-order dispersion in a 100 Gb/s single channel system with in-line fibre Bragg gratings. Journal of Modern Optics, 52, 1197–1206.
28.
go back to reference Agarwal, S., & Mishra, V. (2013). Effect of grating length on chromatic dispersion in polymer coated apodization grating. IJRTE, 2(5), 36–39. Agarwal, S., & Mishra, V. (2013). Effect of grating length on chromatic dispersion in polymer coated apodization grating. IJRTE, 2(5), 36–39.
29.
go back to reference Rashed, A., & Tabbour, M. (2019). The engagement of hybrid dispersion compensation schemes performance signature for ultra wide bandwidth and ultra long haul optical transmission systems. Wireless Personal Communications, 109, 2399–2410.CrossRef Rashed, A., & Tabbour, M. (2019). The engagement of hybrid dispersion compensation schemes performance signature for ultra wide bandwidth and ultra long haul optical transmission systems. Wireless Personal Communications, 109, 2399–2410.CrossRef
30.
go back to reference Ashraf, M. (2017). Simulative design of DWDM system using different dispersion compensation techniques. International Journal of Scientific & Engineering Research, 8(10), 446–463. Ashraf, M. (2017). Simulative design of DWDM system using different dispersion compensation techniques. International Journal of Scientific & Engineering Research, 8(10), 446–463.
31.
go back to reference Bobrovs, V., Porins, J., & Ivanovs, G. (2012). Comparison of chromatic dispersion compensation techniques for WDM-PON solution. Baltic Congress on Future Internet Communications, 1–4. Bobrovs, V., Porins, J., & Ivanovs, G. (2012). Comparison of chromatic dispersion compensation techniques for WDM-PON solution. Baltic Congress on Future Internet Communications, 1–4.
32.
go back to reference Meena, M. L., & Gupta, R. K. (2019). Design and comparative performance evaluation of chirped FBG dispersion compensation with DCF technique for DWDM optical transmission systems. Optik, 188, 212–224.CrossRef Meena, M. L., & Gupta, R. K. (2019). Design and comparative performance evaluation of chirped FBG dispersion compensation with DCF technique for DWDM optical transmission systems. Optik, 188, 212–224.CrossRef
33.
go back to reference Hayee, M. I., & Willner, A. E. (1997). Pre- and post-compensation of dispersion and nonlinearities in 10-Gb/s WDM systems. IEEE Photonics Technology Letters, 9(9), 1271–1273.CrossRef Hayee, M. I., & Willner, A. E. (1997). Pre- and post-compensation of dispersion and nonlinearities in 10-Gb/s WDM systems. IEEE Photonics Technology Letters, 9(9), 1271–1273.CrossRef
34.
go back to reference Mohammed, N. A., Moustafa, M. S., Moustafa, H. A., & Aly, H. (2014). Design and performance evaluation of a dispersion compensation unit using several chirping functions in a tanh apodized FBG and comparison with dispersion compensation fiber. Applied Optics, 53(29), 239–247.CrossRef Mohammed, N. A., Moustafa, M. S., Moustafa, H. A., & Aly, H. (2014). Design and performance evaluation of a dispersion compensation unit using several chirping functions in a tanh apodized FBG and comparison with dispersion compensation fiber. Applied Optics, 53(29), 239–247.CrossRef
36.
go back to reference Hussein, T. F., Rizk, M. R. M., & Aly, M. H. (2019). A hybrid DCF/FBG scheme for dispersion compensation over a 300 km SMF. Optical and Quantum Electronics, 51(103), 1–16. Hussein, T. F., Rizk, M. R. M., & Aly, M. H. (2019). A hybrid DCF/FBG scheme for dispersion compensation over a 300 km SMF. Optical and Quantum Electronics, 51(103), 1–16.
39.
go back to reference Aggarwal, S., Garg, N., Kaur, G., Madhu, C., & Singh, P. (2021). Performance evaluation of diverse hybrid pulse width reduction modules in WDM systems. IOP Conference Series: Materials Science and Engineering, 1033, 1179 Aggarwal, S., Garg, N., Kaur, G., Madhu, C., & Singh, P. (2021). Performance evaluation of diverse hybrid pulse width reduction modules in WDM systems. IOP Conference Series: Materials Science and Engineering, 1033, 1179
Metadata
Title
Performance Evaluation of Various Dispersion Compensation Modules
Authors
Shivin Aggarwal
Nidhi Garg
Gurpreet Kaur
Publication date
29-10-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09226-0

Other articles of this Issue 3/2022

Wireless Personal Communications 3/2022 Go to the issue