Skip to main content
Top

2017 | OriginalPaper | Chapter

Performance Indicators for Online Secondary Education: A Case Study

Authors : Pepijn van Diepen, Bert Bredeweg

Published in: BNAIC 2016: Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There is little consensus about what variables extracted from learner data are the most reliable indicators of learning performance. The aim of this study is to determine such indicators by taking a wide range of variables into consideration concerning overall learning activity and content processing. A genetic algorithm is used for the selection process and variables are evaluated based on their predictive power in a classification task. Variables extracted from exercise activities turn out to be most informative. Exercises designed to train students in understanding and applying material are found to be especially informative.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
Literature
1.
go back to reference Esmeijer, J., van der Plas, A.: Learning Analytics en Zelfsturend Leren. TNO R10373 (2013) Esmeijer, J., van der Plas, A.: Learning Analytics en Zelfsturend Leren. TNO R10373 (2013)
2.
go back to reference Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)MathSciNetMATH Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)MathSciNetMATH
3.
go back to reference Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)MATH Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)MATH
4.
go back to reference Kim, J.: Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 53, 3735–3745 (2009)MathSciNetCrossRefMATH Kim, J.: Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 53, 3735–3745 (2009)MathSciNetCrossRefMATH
5.
go back to reference Kotsiantis, S., Pierrakeas, C., Pintelas, P.: Predicting students’ performance in distance learning using machine learning techniques. Appl. Artif. Intell. 18, 411–426 (2004)CrossRef Kotsiantis, S., Pierrakeas, C., Pintelas, P.: Predicting students’ performance in distance learning using machine learning techniques. Appl. Artif. Intell. 18, 411–426 (2004)CrossRef
6.
go back to reference Krathwohl, D.R.: A revision of Bloom’s taxonomy: an overview. Theory Pract. 41, 212–218 (2002)CrossRef Krathwohl, D.R.: A revision of Bloom’s taxonomy: an overview. Theory Pract. 41, 212–218 (2002)CrossRef
7.
go back to reference Macfadyen, L.P., Dawson, S.: Mining LMS data to develop an early warning system for educators: a proof of concept. Comput. Educ. 54, 588–599 (2010)CrossRef Macfadyen, L.P., Dawson, S.: Mining LMS data to develop an early warning system for educators: a proof of concept. Comput. Educ. 54, 588–599 (2010)CrossRef
8.
go back to reference Minaei-Bidgoli, B.: Predicting student performance: an application of data mining methods with an educational web-based system. Comput. Educ. 47, 157–167 (2015) Minaei-Bidgoli, B.: Predicting student performance: an application of data mining methods with an educational web-based system. Comput. Educ. 47, 157–167 (2015)
9.
go back to reference Morris, L.V., Finnegan, C., Wu, S.: Tracking student behavior, persistence, and achievement in online courses. Internet High. Educ. 8, 221–231 (2005)CrossRef Morris, L.V., Finnegan, C., Wu, S.: Tracking student behavior, persistence, and achievement in online courses. Internet High. Educ. 8, 221–231 (2005)CrossRef
10.
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH
11.
go back to reference Romero, C., Ventura, S., García, E.: Data mining in course management systems: moodle case study and tutorial. Comput. Educ. 51, 368–384 (2008)CrossRef Romero, C., Ventura, S., García, E.: Data mining in course management systems: moodle case study and tutorial. Comput. Educ. 51, 368–384 (2008)CrossRef
12.
go back to reference Sánchez-Maroño, N., Alonso-Betanzos, A., Tombilla-Sanromán, M.: Filter methods for feature selection – a comparative study. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 178–187. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77226-2_19 CrossRef Sánchez-Maroño, N., Alonso-Betanzos, A., Tombilla-Sanromán, M.: Filter methods for feature selection – a comparative study. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 178–187. Springer, Heidelberg (2007). doi:10.​1007/​978-3-540-77226-2_​19 CrossRef
13.
go back to reference Shahiri, A.M., Husain, W.: A review on predicting student’s performance using data mining techniques. Procedia Comput. Sci. 72, 414–422 (2015)CrossRef Shahiri, A.M., Husain, W.: A review on predicting student’s performance using data mining techniques. Procedia Comput. Sci. 72, 414–422 (2015)CrossRef
14.
go back to reference Tempelaar, D.T., Rienties, B., Giesbers, B.: In search for the most informative data for feedback generation; Learning Analytics in a data-rich context. Comput. Human Behav. 47, 157–167 (2015)CrossRef Tempelaar, D.T., Rienties, B., Giesbers, B.: In search for the most informative data for feedback generation; Learning Analytics in a data-rich context. Comput. Human Behav. 47, 157–167 (2015)CrossRef
15.
go back to reference Wolff, A., Zdrahal, Z., Nikolov, A., Pantucek, M.: Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In: Proceedings of the Third International Conference on LAK’33, pp. 145–149 (2013) Wolff, A., Zdrahal, Z., Nikolov, A., Pantucek, M.: Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In: Proceedings of the Third International Conference on LAK’33, pp. 145–149 (2013)
Metadata
Title
Performance Indicators for Online Secondary Education: A Case Study
Authors
Pepijn van Diepen
Bert Bredeweg
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-67468-1_12

Premium Partner