Skip to main content
Top
Published in: Journal of Computational Electronics 4/2018

04-09-2018

Performance investigation of 120 Gb/s all-optical logic XOR gate using dual-reflective semiconductor optical amplifier-based scheme

Authors: Amer Kotb, Kyriakos E. Zoiros, Chunlei Guo

Published in: Journal of Computational Electronics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reflective semiconductor optical amplifiers (RSOAs) use an anti-reflective coating on the front facet and a high reflectivity coating on the rear facet to produce a higher gain than conventional SOAs. In this paper, this potential is exploited to numerically investigate the ultrafast performance of an all-optical logic XOR gate implemented using a dual-RSOA-based scheme at a data rate of 120 Gb/s. The simulation results demonstrate that the XOR gate is capable of operating at 120 Gb/s with better performance than when using conventional SOAs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014)CrossRef Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014)CrossRef
2.
go back to reference Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31, 813–3821 (2013)CrossRef Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31, 813–3821 (2013)CrossRef
3.
go back to reference Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers, 2nd edn. World Scientific Publishing Company, Singapore (2013)CrossRef Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers, 2nd edn. World Scientific Publishing Company, Singapore (2013)CrossRef
4.
go back to reference Kotb, A.: All-Optical Logic Gates Using Semiconductor Optical Amplifier. Lambert Academic Publishing, Saarbrucken (2012) Kotb, A.: All-Optical Logic Gates Using Semiconductor Optical Amplifier. Lambert Academic Publishing, Saarbrucken (2012)
5.
go back to reference Chen, H., Zhu, G., Wang, Q., Jaques, J., Leuthold, J., Piccirilli, A.B., Dutta, N.K.: All-optical logic XOR using a differential scheme and Mach–Zehnder interferometer. Electron. Lett. 38, 1271–1276 (2002)CrossRef Chen, H., Zhu, G., Wang, Q., Jaques, J., Leuthold, J., Piccirilli, A.B., Dutta, N.K.: All-optical logic XOR using a differential scheme and Mach–Zehnder interferometer. Electron. Lett. 38, 1271–1276 (2002)CrossRef
6.
go back to reference Wang, Q., Zhu, G., Chen, H., Jaques, J., Leuthold, J., Piccirilli, A.B., Dutta, N.K.: Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J. Quantum Electron. 40, 703–709 (2004)CrossRef Wang, Q., Zhu, G., Chen, H., Jaques, J., Leuthold, J., Piccirilli, A.B., Dutta, N.K.: Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J. Quantum Electron. 40, 703–709 (2004)CrossRef
7.
go back to reference Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: 10 Gbits all-optical composite logic gates with XOR, NOR, OR, and NAND functions using SOA-MZI structures. Electron. Lett. 42, 303–307 (2006)CrossRef Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: 10 Gbits all-optical composite logic gates with XOR, NOR, OR, and NAND functions using SOA-MZI structures. Electron. Lett. 42, 303–307 (2006)CrossRef
8.
go back to reference Martínez, J.M., Ramos, F., Martí, J.: 10 Gb/s reconfigurable optical logic gate using a single hybrid-integrated SOA-MZI. Fiber Integr. Opt. 27, 15–20 (2008)CrossRef Martínez, J.M., Ramos, F., Martí, J.: 10 Gb/s reconfigurable optical logic gate using a single hybrid-integrated SOA-MZI. Fiber Integr. Opt. 27, 15–20 (2008)CrossRef
9.
go back to reference Singh, S., Lovkesh, : Ultrahigh-speed optical signal processing logic based on an SOA-MZI. IEEE J. Sel. Top. Quantum Electron. 18, 970–975 (2012)CrossRef Singh, S., Lovkesh, : Ultrahigh-speed optical signal processing logic based on an SOA-MZI. IEEE J. Sel. Top. Quantum Electron. 18, 970–975 (2012)CrossRef
10.
go back to reference Sun, H., Wang, Q., Dong, H., Chen, Z., Dutta, N.K., Jaques, J., Piccirilli, A.B.: All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J. Quantum Electron. 42, 747–751 (2006)CrossRef Sun, H., Wang, Q., Dong, H., Chen, Z., Dutta, N.K., Jaques, J., Piccirilli, A.B.: All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J. Quantum Electron. 42, 747–751 (2006)CrossRef
11.
go back to reference Kang, I., Rasras, M., Buhl, L., Dinu, M., Cabot, S., Cappuzzo, M., Gomez, L.T., Chen, Y.F., Patel, S.S., Dutta, N.K., Piccirilli, A.B., Jaques, J., Giles, C.R.: All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical amplifier Mach–Zehnder interferometers. Opt. Express 17, 19062–19066 (2009)CrossRef Kang, I., Rasras, M., Buhl, L., Dinu, M., Cabot, S., Cappuzzo, M., Gomez, L.T., Chen, Y.F., Patel, S.S., Dutta, N.K., Piccirilli, A.B., Jaques, J., Giles, C.R.: All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical amplifier Mach–Zehnder interferometers. Opt. Express 17, 19062–19066 (2009)CrossRef
12.
go back to reference Kotb, A., Zoiros, K.E.: Performance of all-optical XOR gate based on two-photon absorption in semiconductor optical amplifier-assisted Mach–Zehnder interferometer with effect of amplified spontaneous emission. Opt. Quantum Electron. 46, 935–941 (2014)CrossRef Kotb, A., Zoiros, K.E.: Performance of all-optical XOR gate based on two-photon absorption in semiconductor optical amplifier-assisted Mach–Zehnder interferometer with effect of amplified spontaneous emission. Opt. Quantum Electron. 46, 935–941 (2014)CrossRef
13.
go back to reference Bogoni, A., Potì, L., Ghelfi, P., Scaffardi, M., Porzi, C., Ponzini, F., Meloni, G., Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13, 1–12 (2007)CrossRef Bogoni, A., Potì, L., Ghelfi, P., Scaffardi, M., Porzi, C., Ponzini, F., Meloni, G., Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13, 1–12 (2007)CrossRef
14.
go back to reference Mulvad, H.C.H., Galili, M., Oxenløwe, L.K., Hu, H., Clausen, A.T., Lensen, J.B., Peucheret, C., Jeppesen, P.: Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Opt. Express 18, 1438–1443 (2010)CrossRef Mulvad, H.C.H., Galili, M., Oxenløwe, L.K., Hu, H., Clausen, A.T., Lensen, J.B., Peucheret, C., Jeppesen, P.: Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Opt. Express 18, 1438–1443 (2010)CrossRef
15.
go back to reference Dúill, S.O., Marazzi, L., Parolari, P., Brenot, R., Koos, C., Freude, W., Leuthold, J.: Efficient modulation cancellation using reflective SOAs. Opt. Express 20, 587–594 (2012)CrossRef Dúill, S.O., Marazzi, L., Parolari, P., Brenot, R., Koos, C., Freude, W., Leuthold, J.: Efficient modulation cancellation using reflective SOAs. Opt. Express 20, 587–594 (2012)CrossRef
16.
go back to reference Yu, X., Gibbon, T.B., Monroy, I.T.: Bidirectional radio-over-fiber system with phase-modulation downlink and RF oscillator-free uplink using a reflective SOA. IEEE Photon. Technol. Lett. 20, 2180–2182 (2008)CrossRef Yu, X., Gibbon, T.B., Monroy, I.T.: Bidirectional radio-over-fiber system with phase-modulation downlink and RF oscillator-free uplink using a reflective SOA. IEEE Photon. Technol. Lett. 20, 2180–2182 (2008)CrossRef
17.
go back to reference Spiekman, L.H.: Active devices in passive optical networks. J. Lightwave Technol. 31, 488–497 (2013)CrossRef Spiekman, L.H.: Active devices in passive optical networks. J. Lightwave Technol. 31, 488–497 (2013)CrossRef
18.
go back to reference Mukherjee, K.: A novel frequency encoded all-optical logic gates exploiting polarization insensitive four-wave mixing in semiconductor optical amplifier, filtering property of ADD/DROP multiplexer and non-linearity of reflective semiconductor amplifier. Optik 122, 891–895 (2011)CrossRef Mukherjee, K.: A novel frequency encoded all-optical logic gates exploiting polarization insensitive four-wave mixing in semiconductor optical amplifier, filtering property of ADD/DROP multiplexer and non-linearity of reflective semiconductor amplifier. Optik 122, 891–895 (2011)CrossRef
19.
go back to reference Thollabandi, M., Jung, S.Y., Park, C.S.: All-optical wavelength conversion in GC-RSOA. In: ICTC 6082651, pp. 515–516 (2011) Thollabandi, M., Jung, S.Y., Park, C.S.: All-optical wavelength conversion in GC-RSOA. In: ICTC 6082651, pp. 515–516 (2011)
20.
go back to reference Hu, Z., Sun, J.: All-optical logic NOT gate for Manchester encoded signal using a reflective semiconductor optical amplifier. Opt. Appl. 40, 57–61 (2010) Hu, Z., Sun, J.: All-optical logic NOT gate for Manchester encoded signal using a reflective semiconductor optical amplifier. Opt. Appl. 40, 57–61 (2010)
21.
go back to reference Duill, S.O., Barry, L.P.: Improved reduced models for single-pass and reflective semiconductor optical amplifiers. Opt. Commun. 334, 170–173 (2015)CrossRef Duill, S.O., Barry, L.P.: Improved reduced models for single-pass and reflective semiconductor optical amplifiers. Opt. Commun. 334, 170–173 (2015)CrossRef
22.
go back to reference Antonelli, C., Mecozzi, A.: Reduced model for the nonlinear response of reflective semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 25, 2243–2246 (2013)CrossRef Antonelli, C., Mecozzi, A.: Reduced model for the nonlinear response of reflective semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 25, 2243–2246 (2013)CrossRef
23.
go back to reference Cassioli, D., Scotti, S., Mecozzi, A.: A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers. IEEE J. Quantum Electron. 36, 1072–1080 (2000)CrossRef Cassioli, D., Scotti, S., Mecozzi, A.: A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers. IEEE J. Quantum Electron. 36, 1072–1080 (2000)CrossRef
24.
go back to reference Antonelli, C., Mecozzi, A., Hu, Z., Santagiustina, M.: Analytic study of the modulation response of reflective semiconductor optical amplifiers. J. Lightwave Technol. 33, 4367–4376 (2015)CrossRef Antonelli, C., Mecozzi, A., Hu, Z., Santagiustina, M.: Analytic study of the modulation response of reflective semiconductor optical amplifiers. J. Lightwave Technol. 33, 4367–4376 (2015)CrossRef
25.
go back to reference Connelly, M.J.: Reflective semiconductor optical amplifier pulse propagation model. IEEE Photon. Technol. Lett. 24, 95–97 (2012)CrossRef Connelly, M.J.: Reflective semiconductor optical amplifier pulse propagation model. IEEE Photon. Technol. Lett. 24, 95–97 (2012)CrossRef
26.
go back to reference Sengupta, I., Barman, A.D.: Analysis of optical re-modulation by multistage modeling of RSOA. Optik 125, 3393–3400 (2014)CrossRef Sengupta, I., Barman, A.D.: Analysis of optical re-modulation by multistage modeling of RSOA. Optik 125, 3393–3400 (2014)CrossRef
27.
go back to reference Schares, L., Schubert, C., Schmidt, C., Weber, H.G., Occhi, L., Guekos, L.: Phase dynamics of semiconductor optical amplifiers at 10 to 40 GHz. IEEE J. Quantum Electron. 39, 1394–1408 (2003)CrossRef Schares, L., Schubert, C., Schmidt, C., Weber, H.G., Occhi, L., Guekos, L.: Phase dynamics of semiconductor optical amplifiers at 10 to 40 GHz. IEEE J. Quantum Electron. 39, 1394–1408 (2003)CrossRef
28.
go back to reference Ueno, Y., Nakamura, S., Tajima, K.: Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. J. Opt. Soc. Am. B 19, 2573–2589 (2002)CrossRef Ueno, Y., Nakamura, S., Tajima, K.: Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. J. Opt. Soc. Am. B 19, 2573–2589 (2002)CrossRef
29.
go back to reference Giller, R., Manning, R.J., Talli, G., Webb, R.P., Adams, M.J.: Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds. Opt. Express 15, 1773–1782 (2007)CrossRef Giller, R., Manning, R.J., Talli, G., Webb, R.P., Adams, M.J.: Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds. Opt. Express 15, 1773–1782 (2007)CrossRef
30.
go back to reference Ma, S., Sun, H., Chen, Z., Dutta, N.K.: High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Express 17, 18469–18477 (2009)CrossRef Ma, S., Sun, H., Chen, Z., Dutta, N.K.: High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Express 17, 18469–18477 (2009)CrossRef
31.
go back to reference Rizou, Z.V., Zoiros, K.E., Hatziefremidis, A., Connelly, M.J.: Design analysis and performance optimization of a Lyot filter for semiconductor optical amplifier pattern effect suppression. J. Sel. Top. Quantum Electron. 19, 1–9 (2013)CrossRef Rizou, Z.V., Zoiros, K.E., Hatziefremidis, A., Connelly, M.J.: Design analysis and performance optimization of a Lyot filter for semiconductor optical amplifier pattern effect suppression. J. Sel. Top. Quantum Electron. 19, 1–9 (2013)CrossRef
32.
go back to reference Kumar, Y., Shenoy, M.R.: Enhancement in the gain recovery of a semiconductor optical amplifier by device temperature control. Pramana J. Phys. 87, 82 (2016)CrossRef Kumar, Y., Shenoy, M.R.: Enhancement in the gain recovery of a semiconductor optical amplifier by device temperature control. Pramana J. Phys. 87, 82 (2016)CrossRef
33.
go back to reference Cho, K.Y., Hong, U.H., Choi, H., Chung, Y.C.: Maximum operable speed of WDM PON employing bandwidth-limited RSOAs. Opt. Commun. 312, 159–162 (2014)CrossRef Cho, K.Y., Hong, U.H., Choi, H., Chung, Y.C.: Maximum operable speed of WDM PON employing bandwidth-limited RSOAs. Opt. Commun. 312, 159–162 (2014)CrossRef
34.
go back to reference Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)CrossRef Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)CrossRef
35.
go back to reference Wei, J.L., Hamié, A., Gidding, R.P., Hugues-Salas, E., Zheng, X., Mansoor, S., Tang, J.M.: Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems. Opt. Express 18, 8556–8573 (2010)CrossRef Wei, J.L., Hamié, A., Gidding, R.P., Hugues-Salas, E., Zheng, X., Mansoor, S., Tang, J.M.: Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems. Opt. Express 18, 8556–8573 (2010)CrossRef
36.
go back to reference Zhou, E., Zhang, X., Huang, D.: Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model. Opt. Express 15, 9096–9106 (2007)CrossRef Zhou, E., Zhang, X., Huang, D.: Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model. Opt. Express 15, 9096–9106 (2007)CrossRef
37.
go back to reference Olsson, N.A.: Lightwave systems with optical amplifiers. J. Lightwave Technol. 7, 1071–1082 (1989)CrossRef Olsson, N.A.: Lightwave systems with optical amplifiers. J. Lightwave Technol. 7, 1071–1082 (1989)CrossRef
38.
go back to reference Wei, J.L., Yang, X.L., Giddings, R.P., Tang, J.M.: Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators. Opt. Express 17, 9012–9027 (2009)CrossRef Wei, J.L., Yang, X.L., Giddings, R.P., Tang, J.M.: Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators. Opt. Express 17, 9012–9027 (2009)CrossRef
39.
go back to reference Siarkos, T., Zoiros, K.E., Nastou, D.: On the feasibility of full pattern-operated all-optical XOR gate with single semiconductor optical amplifier-based ultrafast nonlinear interferometer. Opt. Commun. 282, 2729–2734 (2009)CrossRef Siarkos, T., Zoiros, K.E., Nastou, D.: On the feasibility of full pattern-operated all-optical XOR gate with single semiconductor optical amplifier-based ultrafast nonlinear interferometer. Opt. Commun. 282, 2729–2734 (2009)CrossRef
40.
Metadata
Title
Performance investigation of 120 Gb/s all-optical logic XOR gate using dual-reflective semiconductor optical amplifier-based scheme
Authors
Amer Kotb
Kyriakos E. Zoiros
Chunlei Guo
Publication date
04-09-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1243-4

Other articles of this Issue 4/2018

Journal of Computational Electronics 4/2018 Go to the issue