Skip to main content
Top
Published in: Wireless Personal Communications 4/2022

19-07-2022

Performance Modelling and Design Techniques for Efficiency Improvement in On-chip Switched-Capacitor DC-DC Converter

Authors: Sunita Saini, Davinder Singh Saini

Published in: Wireless Personal Communications | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fundamental charge vector method analysis is a single parameter optimization technique limited to conduction loss assuming all frequency-dependent switching (parasitic) loss negligible. This paper investigates a generalized structure to design DC-DC SC converters based on conduction and switching loss. A new technique is proposed to find the optimum value of switching frequency and switch size to calculate target load current and output voltage that maximize the efficiency. The analysis is done to identify switching frequency and switch size for two-phase 2:1 series–parallel SC converter for a target load current of 2.67 mA implemented on a 22 nm technology node. Results show that a minimum of 250 MHz switching frequency is required for target efficiency more than 90% and the output voltage greater than 0.85 V where the switch size of a unit cell corresponds to 10Ω on-resistance. MATLAB and PSpice simulation tools are used for results and validation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chang, C., Wu, C., Yuan, Y., Hu, J., & Bian, B. (2016). Design of a high efficiency and low EMI boost converter using bi-frequency PFM control scheme. International Journal of Analog Integrated Circuits and Signal Processing, 85, 473–480.CrossRef Chang, C., Wu, C., Yuan, Y., Hu, J., & Bian, B. (2016). Design of a high efficiency and low EMI boost converter using bi-frequency PFM control scheme. International Journal of Analog Integrated Circuits and Signal Processing, 85, 473–480.CrossRef
2.
go back to reference Kesarwani, K., & Sangwan, R. (2015). Resonant-switched capacitor converters for chip-scale power delivery: Design and implementation. IEEE Transactions on Power Electronics, 30, 6966–6977.CrossRef Kesarwani, K., & Sangwan, R. (2015). Resonant-switched capacitor converters for chip-scale power delivery: Design and implementation. IEEE Transactions on Power Electronics, 30, 6966–6977.CrossRef
3.
go back to reference Gupta, B., Balyan, V., & Saini, D. S. (2020). QOSTBC coded MIMO system with reduced complexity and optimised decoding for rank deficient channels. IET Communications, 14, 646–654.CrossRef Gupta, B., Balyan, V., & Saini, D. S. (2020). QOSTBC coded MIMO system with reduced complexity and optimised decoding for rank deficient channels. IET Communications, 14, 646–654.CrossRef
4.
go back to reference Ramesh-Babu, A., & Raghavendiran, T. A. (2019). High voltage gain multiphase interleaved DC-DC converter for DC micro grid application using intelligent control. Computers & Electrical Engineering, 74, 451–465.CrossRef Ramesh-Babu, A., & Raghavendiran, T. A. (2019). High voltage gain multiphase interleaved DC-DC converter for DC micro grid application using intelligent control. Computers & Electrical Engineering, 74, 451–465.CrossRef
5.
go back to reference Andersen, T. M., Krismer, F., Kolar, J. W., et al. (2015). 20.3 A feedforward controlled on-chip SC voltage regulator delivering 10 w in 32 nm SOI CMOS. In: Proceedings 2015 IEEE international solid-state circuits conference (pp. 1–3). Andersen, T. M., Krismer, F., Kolar, J. W., et al. (2015). 20.3 A feedforward controlled on-chip SC voltage regulator delivering 10 w in 32 nm SOI CMOS. In: Proceedings 2015 IEEE international solid-state circuits conference (pp. 1–3).
6.
go back to reference Villar-Pique, G., Bergveld, H., & Alarcon, E. (2013). Survey and benchmark of fully integrated switching power converters: SC versus inductive approach. IEEE Transactions on Power Electronics, 28(9), 4156–4167.CrossRef Villar-Pique, G., Bergveld, H., & Alarcon, E. (2013). Survey and benchmark of fully integrated switching power converters: SC versus inductive approach. IEEE Transactions on Power Electronics, 28(9), 4156–4167.CrossRef
7.
go back to reference Rahim, N. A., Amir, A., & El Khateb, A., et al. (2016). Gain and efficiency analysis of 2-stage switched capacitor (SC) boost based dc-dc converter. In Proceedings of 4th IET clean energy and technology conference (CEAT) (pp.1–5). Rahim, N. A., Amir, A., & El Khateb, A., et al. (2016). Gain and efficiency analysis of 2-stage switched capacitor (SC) boost based dc-dc converter. In Proceedings of 4th IET clean energy and technology conference (CEAT) (pp.1–5).
8.
go back to reference Suciu, V. M., Salcu, S. I., Pintilie, L. N., Teodosescu, P. D., & Mathe, Z. (2018). Theoretical efficiency analysis of a buck-boost converter for wide voltage range operation. 2018 10th international conference on electronics, computers and artificial intelligence (ECAI) (pp.1–4). Suciu, V. M., Salcu, S. I., Pintilie, L. N., Teodosescu, P. D., & Mathe, Z. (2018). Theoretical efficiency analysis of a buck-boost converter for wide voltage range operation. 2018 10th international conference on electronics, computers and artificial intelligence (ECAI) (pp.1–4).
9.
go back to reference Sanders, S. R., Alon, E., Alon, H. P., et al. (2013). The road to fully integrated DC-DC Conversion via the SC approach. IEEE Transactions on Power Electronics, 28(9), 4146–4155.CrossRef Sanders, S. R., Alon, E., Alon, H. P., et al. (2013). The road to fully integrated DC-DC Conversion via the SC approach. IEEE Transactions on Power Electronics, 28(9), 4146–4155.CrossRef
10.
go back to reference Rikhtegar Ghiasi, R., Sahafi, A., Sobhi Geshlaghi, J., et al. (2015). A 2:1 switched-capacitor DC–DC converter for low power circuits. An International Journal of Analog Integrated Circuits and Signal Processing, 84, 215–222.CrossRef Rikhtegar Ghiasi, R., Sahafi, A., Sobhi Geshlaghi, J., et al. (2015). A 2:1 switched-capacitor DC–DC converter for low power circuits. An International Journal of Analog Integrated Circuits and Signal Processing, 84, 215–222.CrossRef
11.
go back to reference Burton, E. A., Schrom, G., & Paillet, F., et al. (2014). Fully integrated voltage regulators on 4th generation intel core SOCS. In Proceedings of 2014 29th IEEE conference on application power electronics (pp. 432–439). IEEE. Burton, E. A., Schrom, G., & Paillet, F., et al. (2014). Fully integrated voltage regulators on 4th generation intel core SOCS. In Proceedings of 2014 29th IEEE conference on application power electronics (pp. 432–439). IEEE.
12.
go back to reference Seeman, M. D. (2009). A design methodology for SC DC-DC converter. Ph.D. Thesis, University of California, Berkeley. Seeman, M. D. (2009). A design methodology for SC DC-DC converter. Ph.D. Thesis, University of California, Berkeley.
13.
go back to reference Bhattacharyya, K., & Mandal, P. (2014). An approach to design and implementation of on-chip clock generator for the switched capacitor based embedded DC–DC converter. Computers & Electrical Engineering, 40(4), 1042–1052.CrossRef Bhattacharyya, K., & Mandal, P. (2014). An approach to design and implementation of on-chip clock generator for the switched capacitor based embedded DC–DC converter. Computers & Electrical Engineering, 40(4), 1042–1052.CrossRef
14.
go back to reference Seeman, M. D., & Sanders, S. R. (2008). Analysis and optimization of SC dc-dc converters. IEEE Transactions on Power Electronics, 23(2), 841–851.CrossRef Seeman, M. D., & Sanders, S. R. (2008). Analysis and optimization of SC dc-dc converters. IEEE Transactions on Power Electronics, 23(2), 841–851.CrossRef
15.
go back to reference Le, H. P., Sanders, S. R., & Alon, E. (2011). Design techniques for fully integrated SC DC-DC converters. IEEE Journal of Solid-State Circuits, 46, 2120–2131.CrossRef Le, H. P., Sanders, S. R., & Alon, E. (2011). Design techniques for fully integrated SC DC-DC converters. IEEE Journal of Solid-State Circuits, 46, 2120–2131.CrossRef
16.
go back to reference Makowski, M. S., & Maksimovic, D. (1995). Performance limits of SC dc-dc converters. In Proceedings of 1995 international conference on power electronics spec. (pp. 1215–1221). Makowski, M. S., & Maksimovic, D. (1995). Performance limits of SC dc-dc converters. In Proceedings of 1995 international conference on power electronics spec. (pp. 1215–1221).
17.
go back to reference Zanwar, M., & Sen, S. (2016). Switch selection and sizing in CMOS implementation of variable output switched capacitor step down DC-DC converter. In Proceedings of 2016 IEEE international conference on electronics, circuits and systems (ICECS) (pp. 1–4). ICECS. Zanwar, M., & Sen, S. (2016). Switch selection and sizing in CMOS implementation of variable output switched capacitor step down DC-DC converter. In Proceedings of 2016 IEEE international conference on electronics, circuits and systems (ICECS) (pp. 1–4). ICECS.
18.
go back to reference Mohammed, S. A., Dogan, H., & Ozgun, M. T. (2017). An 85% efficiency reconfigurable multi-phase SC DC-DC converter utilizing frequency, switch size and interleaving scaling techniques. Microelectronics, 67, 155–161.CrossRef Mohammed, S. A., Dogan, H., & Ozgun, M. T. (2017). An 85% efficiency reconfigurable multi-phase SC DC-DC converter utilizing frequency, switch size and interleaving scaling techniques. Microelectronics, 67, 155–161.CrossRef
19.
go back to reference Souza, R. D., & Barbi, I. (2015). Minimum power losses operation for SC converters. In Proceedings of 2015 17th European conference on power electronics and applications (pp. 1–9). Souza, R. D., & Barbi, I. (2015). Minimum power losses operation for SC converters. In Proceedings of 2015 17th European conference on power electronics and applications (pp. 1–9).
20.
go back to reference Jan, C. H., Bhattacharya, U., & Brain, R., et al. (2012). 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra-low power, high performance and high density SoC applications. In Proceedings of 2012 IEEE international conference on electron devices meeting (IEDM) (pp. 1–4). IEEE. Jan, C. H., Bhattacharya, U., & Brain, R., et al. (2012). 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra-low power, high performance and high density SoC applications. In Proceedings of 2012 IEEE international conference on electron devices meeting (IEDM) (pp. 1–4). IEEE.
21.
go back to reference Jain, R., Geuskens, B. M., Kim, S. T., et al. (2014). A 0.45-1 V fully integrated distributed SC DC-DC converter with high-density MIM capacitor in 22nm tri-gate. IEEE Journal of Solid-State Circuits, 49, 917–927.CrossRef Jain, R., Geuskens, B. M., Kim, S. T., et al. (2014). A 0.45-1 V fully integrated distributed SC DC-DC converter with high-density MIM capacitor in 22nm tri-gate. IEEE Journal of Solid-State Circuits, 49, 917–927.CrossRef
22.
go back to reference Saadat, A., & Murmann, B. (2015). A 0.6V–2.4V input, fully integrated reconfigurable switched capacitor DC-DC converter for energy harvesting sensor tags. In Proceedings of 2015 IEEE conference on solid-state circuits (A-SSCC) (pp. 1–4). IEEE. Saadat, A., & Murmann, B. (2015). A 0.6V–2.4V input, fully integrated reconfigurable switched capacitor DC-DC converter for energy harvesting sensor tags. In Proceedings of 2015 IEEE conference on solid-state circuits (A-SSCC) (pp. 1–4). IEEE.
23.
go back to reference Jung, I. S., Kim, Y. B., & Chai, M. (2011). The novel SC DC-DC converter for fast response time and reduced ripple. In Proceedings of 2011 IEEE 54th international Midwest symposium on circuits and systems (MWSCAS) (pp. 1–4). IEEE. Jung, I. S., Kim, Y. B., & Chai, M. (2011). The novel SC DC-DC converter for fast response time and reduced ripple. In Proceedings of 2011 IEEE 54th international Midwest symposium on circuits and systems (MWSCAS) (pp. 1–4). IEEE.
24.
go back to reference Nurhuda, H. F., & Yang, Y. (2014). A three topology-based, wide input range SC DC-DC converter with low ripple and enhanced load line regulation. In Proceedings of 2014 IEEE 14th international symposium on integrated circuits (ISIC) (pp. 18–16). IEEE. Nurhuda, H. F., & Yang, Y. (2014). A three topology-based, wide input range SC DC-DC converter with low ripple and enhanced load line regulation. In Proceedings of 2014 IEEE 14th international symposium on integrated circuits (ISIC) (pp. 18–16). IEEE.
Metadata
Title
Performance Modelling and Design Techniques for Efficiency Improvement in On-chip Switched-Capacitor DC-DC Converter
Authors
Sunita Saini
Davinder Singh Saini
Publication date
19-07-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09925-2

Other articles of this Issue 4/2022

Wireless Personal Communications 4/2022 Go to the issue