Skip to main content
Top
Published in: Wireless Personal Communications 3/2017

19-09-2016

Performance of Enhanced Massive Multiuser MIMO Systems Using Transmit Beamforming and Transmit Antenna Selection Techniques

Authors: Said E. El-Khamy, Karim H. Moussa, Amr A. El-Sherif

Published in: Wireless Personal Communications | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the performances of massive multiuser multiple input multiple output (MMU MIMO) system with different transmit beamforming (BF) techniques and different suboptimal transmit antenna selection (TAS) algorithms over Rayleigh fading channels are investigated. Three linear transmit BF types are considered, namely, maximum ratio transmission (MRT BF), zero forcing (ZF BF) and minimum mean square error (MMSE BF). Two TAS algorithms are considered, that are pairwise error probability minimization (PM) and the capacity maximization (CM). TAS techniques are used in order to reduce the number of radio frequency (RF) chains, system complexity, and cost. This makes MMU MIMO more applicable in beyond 4G communication systems. The simulation results show that TAS algorithms are capable of decreasing the complexity of the system while maintaining the same performance of the MMU MIMO system, complex TAS techniques are not needed at large number of RF chains, and the performance improvement due to the increase of this number is limited to a certain threshold. It also demonstrated that the MMSE BF and ZF BF bit error rate performance values are better than MRT BF values for both CM and PM TAS algorithms, but it is limited to the large number of users. On the other hand, the MRT BF technique performance is good at small Eb/N0 values for both PM and CM TAS but it is relatively less affected by increasing the number of users.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chiurtu, N., Rimoldi, B., & Telatar, B. (2001). On the capacity of multi-antenna Gaussian channels. Proceedings 2001 IEEE International Symposium on Inf. Theory, p. 53. Chiurtu, N., Rimoldi, B., & Telatar, B. (2001). On the capacity of multi-antenna Gaussian channels. Proceedings 2001 IEEE International Symposium on Inf. Theory, p. 53.
2.
go back to reference Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.CrossRef Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.CrossRef
3.
go back to reference Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
4.
go back to reference Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef
5.
go back to reference Lu, L., Li, G., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef Lu, L., Li, G., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef
6.
go back to reference Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef
7.
go back to reference Jiang, M., & Hanzo, L. (2007). Multiuser MIMO-OFDM for next-generation wireless systems. Proceedings of the IEEE, 95(7), 1430–1469.CrossRef Jiang, M., & Hanzo, L. (2007). Multiuser MIMO-OFDM for next-generation wireless systems. Proceedings of the IEEE, 95(7), 1430–1469.CrossRef
8.
go back to reference Choi, R. L. U., Ivrlač, M. T., Murch, R. D., & Utschick, W. (2004). On strategies of multiuser MIMO transmit signal processing. IEEE Transactions on Wireless Communications, 3(6), 1936–1941.CrossRef Choi, R. L. U., Ivrlač, M. T., Murch, R. D., & Utschick, W. (2004). On strategies of multiuser MIMO transmit signal processing. IEEE Transactions on Wireless Communications, 3(6), 1936–1941.CrossRef
9.
go back to reference Joham, M., Utschick, W., & Nossek, J. A. (2005). Linear transmit processing in MIMO communications systems. IEEE Transactions on Signal Processing, 53(8), 2700–2712.MathSciNetCrossRef Joham, M., Utschick, W., & Nossek, J. A. (2005). Linear transmit processing in MIMO communications systems. IEEE Transactions on Signal Processing, 53(8), 2700–2712.MathSciNetCrossRef
10.
go back to reference Xiang, Z., Tao, M., & Wang, X. (2014). Massive MIMO multicasting in noncooperative cellular networks. IEEE Journal on Selected Areas in Communications, 32(6), 1180–1193.CrossRef Xiang, Z., Tao, M., & Wang, X. (2014). Massive MIMO multicasting in noncooperative cellular networks. IEEE Journal on Selected Areas in Communications, 32(6), 1180–1193.CrossRef
11.
go back to reference Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31, 160–171.CrossRef Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31, 160–171.CrossRef
12.
go back to reference Zhao, L., Zhao, H., Hu, F., Zheng, K., & Zhang, J. (2013). Energy efficient power allocation algorithm for downlink massive MIMO with MRT precoding. In 78th IEEE Vehicular Technology Conference, pp. 1–5. Zhao, L., Zhao, H., Hu, F., Zheng, K., & Zhang, J. (2013). Energy efficient power allocation algorithm for downlink massive MIMO with MRT precoding. In 78th IEEE Vehicular Technology Conference, pp. 1–5.
13.
go back to reference Yoo, T., & Goldsmith, A. (2006). On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE Journal on Selected Areas in Communications, 24(3), 528–541.CrossRef Yoo, T., & Goldsmith, A. (2006). On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE Journal on Selected Areas in Communications, 24(3), 528–541.CrossRef
14.
go back to reference Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. IEEE Communications Magazine, 42(10), 68–73.CrossRefMATH Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. IEEE Communications Magazine, 42(10), 68–73.CrossRefMATH
15.
go back to reference Dao, N. D., & Sun, Y. (2010). User-selection algorithms for multiuser precoding. IEEE Transactions on Vehicular Technology, 59, 3617–3622.CrossRef Dao, N. D., & Sun, Y. (2010). User-selection algorithms for multiuser precoding. IEEE Transactions on Vehicular Technology, 59, 3617–3622.CrossRef
16.
go back to reference Ko, K., & Lee, J. (2012). Multiuser MIMO user selection based on chordal distance. IEEE Transactions on Communications, 60(3), 649–654.CrossRef Ko, K., & Lee, J. (2012). Multiuser MIMO user selection based on chordal distance. IEEE Transactions on Communications, 60(3), 649–654.CrossRef
17.
go back to reference Yılmaz, A., & Kucur, O. (2014). Performances of transmit antenna selection, receive antenna selection, and maximal-ratio-combining-based hybrid techniques in the presence of feedback errors. IEEE Transactions on Vehicular Technology, 63(4), 1976–1982.CrossRef Yılmaz, A., & Kucur, O. (2014). Performances of transmit antenna selection, receive antenna selection, and maximal-ratio-combining-based hybrid techniques in the presence of feedback errors. IEEE Transactions on Vehicular Technology, 63(4), 1976–1982.CrossRef
18.
go back to reference Sklar, B. (1993). Rayleigh fading channels in mobile digital communication systems part I: Characterization. IEEE Communications Magazine, 35(7), 90–100.CrossRef Sklar, B. (1993). Rayleigh fading channels in mobile digital communication systems part I: Characterization. IEEE Communications Magazine, 35(7), 90–100.CrossRef
19.
go back to reference Bjornson, E., Bengtsson, M., & Ottersten, B. (2014). Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [Lecture Notes]. IEEE Signal Processing Magazine, 31(4), 142–148.CrossRef Bjornson, E., Bengtsson, M., & Ottersten, B. (2014). Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [Lecture Notes]. IEEE Signal Processing Magazine, 31(4), 142–148.CrossRef
20.
go back to reference El-khamy, S. E., Moussa, K. H., & El-sherif, A. A. (2015). Performance analysis of massive MIMO multiuser transmit beamforming techniques over generalized spatial channel model. In 32nd National Radio Science Conference (NRSC), pp. 139–146. El-khamy, S. E., Moussa, K. H., & El-sherif, A. A. (2015). Performance analysis of massive MIMO multiuser transmit beamforming techniques over generalized spatial channel model. In 32nd National Radio Science Conference (NRSC), pp. 139–146.
21.
go back to reference Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2011). Linear pre-coding performance in measured very-large MIMO channels. IEEE Vehicular Technology Conference. Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2011). Linear pre-coding performance in measured very-large MIMO channels. IEEE Vehicular Technology Conference.
22.
go back to reference Cho, Y. S., Kim, J., Yang, W. Y. & Kang, C. G. (2010). MIMO-OFDM Wireless Communications with MATLAB. Cho, Y. S., Kim, J., Yang, W. Y. & Kang, C. G. (2010). MIMO-OFDM Wireless Communications with MATLAB.
Metadata
Title
Performance of Enhanced Massive Multiuser MIMO Systems Using Transmit Beamforming and Transmit Antenna Selection Techniques
Authors
Said E. El-Khamy
Karim H. Moussa
Amr A. El-Sherif
Publication date
19-09-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3713-y

Other articles of this Issue 3/2017

Wireless Personal Communications 3/2017 Go to the issue