Skip to main content
Top

2024 | OriginalPaper | Chapter

Performance of Stratum Ventilated Heating for Sleeping Environment

Authors : Jian Liu, Zhang Lin

Published in: Stratum Ventilation—Advanced Air Distribution for Low-Carbon and Healthy Buildings

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter aims to explore the impact of operational parameters on the heating performance of stratum ventilation in a sleeping environment. Validated Computational Fluid Dynamics simulations are employed to comprehensively assess the effects of supply vane angle, supply airflow rate, supply air temperature, and outdoor weather conditions. The chapter considers various performance parameters, including operative temperature, local partial thermal sensation, local mean age of air, air change efficiency, and energy utilization coefficient. The results demonstrate that stratum ventilation effectively achieves a temperature distribution that meets the local thermal requirements of occupants in the sleeping environment, with a warmer head zone compared to the body zone. Additionally, stratum ventilation performs favorably in terms of indoor air quality and energy utilization efficiency. The maximum bed zone air change efficiency reaches 0.80, and the maximum room zone air change efficiency reaches 0.57, surpassing the values found in conventional uniform environments (i.e., 0.5). Furthermore, the maximum energy utilization coefficient of stratum ventilation reaches 1.45, surpassing the energy utilization coefficient of the conventional uniform environment (i.e., 1.0). To optimize the implementation of stratum ventilated heating, this chapter identifies the optimal supply airflow rate, supply vane angle, and supply air temperature, considering factors such as thermal comfort, indoor air quality, and energy utilization efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Song C, Liu Y, Liu J (2018) The sleeping thermal comfort model based on local thermal requirements in winter. Energy Build 173:163–175CrossRef Song C, Liu Y, Liu J (2018) The sleeping thermal comfort model based on local thermal requirements in winter. Energy Build 173:163–175CrossRef
2.
go back to reference Lan L, Tsuzuki K, Liu YF, Lian ZW (2017) Thermal environment and sleep quality: A review. Energy Build 149:101–113CrossRef Lan L, Tsuzuki K, Liu YF, Lian ZW (2017) Thermal environment and sleep quality: A review. Energy Build 149:101–113CrossRef
3.
go back to reference Lin Z, Deng S (2008) A study on the thermal comfort in sleeping environments in the subtropics—developing a thermal comfort model for sleeping environments. Build Environ 43(1):70–81CrossRef Lin Z, Deng S (2008) A study on the thermal comfort in sleeping environments in the subtropics—developing a thermal comfort model for sleeping environments. Build Environ 43(1):70–81CrossRef
4.
go back to reference Leung C, Ge H (2013) Sleep thermal comfort and the energy saving potential due to reduced indoor operative temperature during sleep. Build Environ 59:91–98CrossRef Leung C, Ge H (2013) Sleep thermal comfort and the energy saving potential due to reduced indoor operative temperature during sleep. Build Environ 59:91–98CrossRef
5.
go back to reference Strøm-Tejsen P, Zukowska D, Wargocki P, Wyon DP (2016) The effects of bedroom air quality on sleep and next-day performance. Indoor Air 26(5):679–686CrossRef Strøm-Tejsen P, Zukowska D, Wargocki P, Wyon DP (2016) The effects of bedroom air quality on sleep and next-day performance. Indoor Air 26(5):679–686CrossRef
6.
go back to reference Zhang S, Cheng Y, Olaide Oladokun M, Wu Y, Lin Z (2020) Improving predicted mean vote with inversely determined metabolic rate. Sustain Cities Soc 53 Zhang S, Cheng Y, Olaide Oladokun M, Wu Y, Lin Z (2020) Improving predicted mean vote with inversely determined metabolic rate. Sustain Cities Soc 53
7.
go back to reference Wargocki P, Wyon DP (2017) Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build Environ 112:359–366 Wargocki P, Wyon DP (2017) Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build Environ 112:359–366
8.
go back to reference Kim M, Chun C, Han J (2010) A study on bedroom environment and sleep quality in Korea. Indoor Built Environ 19(1):123–128CrossRef Kim M, Chun C, Han J (2010) A study on bedroom environment and sleep quality in Korea. Indoor Built Environ 19(1):123–128CrossRef
9.
go back to reference Lin Z, Deng S (2006) A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong. Energy Build 38(11):1302–1307CrossRef Lin Z, Deng S (2006) A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong. Energy Build 38(11):1302–1307CrossRef
10.
go back to reference Pan L, Lian Z, Lan L (2012) Investigation of sleep quality under different temperatures based on subjective and physiological measurements. HVAC R Res 18(5):1030–1043CrossRef Pan L, Lian Z, Lan L (2012) Investigation of sleep quality under different temperatures based on subjective and physiological measurements. HVAC R Res 18(5):1030–1043CrossRef
11.
go back to reference Lauenburg P, Wollerstrand J (2014) Adaptive control of radiator systems for a lowest possible district heating return temperature. Energy Build 72:132–140CrossRef Lauenburg P, Wollerstrand J (2014) Adaptive control of radiator systems for a lowest possible district heating return temperature. Energy Build 72:132–140CrossRef
12.
go back to reference Fong ML, Lin Z, Fong KF, Hanby V, Greenough R (2017) Life cycle assessment for three ventilation methods. Build Environ 116:73–88CrossRef Fong ML, Lin Z, Fong KF, Hanby V, Greenough R (2017) Life cycle assessment for three ventilation methods. Build Environ 116:73–88CrossRef
13.
go back to reference Karabay H, Arici M, Sandik M (2013) A numerical investigation of fluid flow and heat transfer inside a room for floor heating and wall heating systems. Energy Build 67:471–478CrossRef Karabay H, Arici M, Sandik M (2013) A numerical investigation of fluid flow and heat transfer inside a room for floor heating and wall heating systems. Energy Build 67:471–478CrossRef
14.
go back to reference Lundqvist P, Risberg M, Westerlund L (2019) Air heating system design for a sub-Arctic climate using a CFD technique. Build Environ 160 Lundqvist P, Risberg M, Westerlund L (2019) Air heating system design for a sub-Arctic climate using a CFD technique. Build Environ 160
15.
go back to reference Zhang X, Chen B, Fan X (2015) Different fuel types and heating approaches impact on the indoor air quality of rural houses in Northern China. In: Procedia Eng Zhang X, Chen B, Fan X (2015) Different fuel types and heating approaches impact on the indoor air quality of rural houses in Northern China. In: Procedia Eng
16.
go back to reference Dehghan MH, Abdolzadeh M (2018) Comparison study on air flow and particle dispersion in a typical room with floor, skirt boarding, and radiator heating systems. Build Environ 133:161–177CrossRef Dehghan MH, Abdolzadeh M (2018) Comparison study on air flow and particle dispersion in a typical room with floor, skirt boarding, and radiator heating systems. Build Environ 133:161–177CrossRef
17.
go back to reference Myhren JA, Holmberg S (2008) Flow patterns and thermal comfort in a room with panel, floor and wall heating. Energy Build 40(4):524–536CrossRef Myhren JA, Holmberg S (2008) Flow patterns and thermal comfort in a room with panel, floor and wall heating. Energy Build 40(4):524–536CrossRef
18.
go back to reference Wang F, Wang Z, Zheng Y, Lin Z, Hao P, Huan C et al (2015) Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification. Appl Energy 139:212–219CrossRef Wang F, Wang Z, Zheng Y, Lin Z, Hao P, Huan C et al (2015) Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification. Appl Energy 139:212–219CrossRef
19.
go back to reference Liang CH, Zhang XS, Li XW, Chen ZQ (2010) Control strategy and experimental study on a novel defrosting method for air-source heat pump. Appl Therm Eng 30(8–9):892–899CrossRef Liang CH, Zhang XS, Li XW, Chen ZQ (2010) Control strategy and experimental study on a novel defrosting method for air-source heat pump. Appl Therm Eng 30(8–9):892–899CrossRef
20.
go back to reference Zhou L, Li N, He Y, Peng J, Wang C, and Yongga A (2019) A field survey on thermal comfort and energy consumption of traditional electric heating devices (Huo Xiang) for residents in regions without central heating systems in China, Energy Build 196:134–144 Zhou L, Li N, He Y, Peng J, Wang C, and Yongga A (2019) A field survey on thermal comfort and energy consumption of traditional electric heating devices (Huo Xiang) for residents in regions without central heating systems in China, Energy Build 196:134–144
21.
go back to reference Zhou X, Lian Z, Lan L (2014) Experimental study on a bedside personalized ventilation system for improving sleep comfort and quality. Indoor Built Environ 23(2):313–323CrossRef Zhou X, Lian Z, Lan L (2014) Experimental study on a bedside personalized ventilation system for improving sleep comfort and quality. Indoor Built Environ 23(2):313–323CrossRef
22.
go back to reference Cheng Y, Lin Z (2015) Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation. Indoor Air 25(6):662–671CrossRef Cheng Y, Lin Z (2015) Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation. Indoor Air 25(6):662–671CrossRef
23.
go back to reference Kong X, Xi C, Li H, Lin Z (2019) A comparative experimental study on the performance of mixing ventilation and stratum ventilation for space heating. Build Environ 157:34–46CrossRef Kong X, Xi C, Li H, Lin Z (2019) A comparative experimental study on the performance of mixing ventilation and stratum ventilation for space heating. Build Environ 157:34–46CrossRef
24.
go back to reference Zhang S, Lin Z, Ai Z, Wang F, Cheng Y, Huan C (2019) Effects of operation parameters on performances of stratum ventilation for heating mode. Build Environ 148:55–66CrossRef Zhang S, Lin Z, Ai Z, Wang F, Cheng Y, Huan C (2019) Effects of operation parameters on performances of stratum ventilation for heating mode. Build Environ 148:55–66CrossRef
25.
go back to reference International Organization for S., ISO 7726:1998 Ergonomics of the thermal environment—instruments for measuring physical quantities International Organization for S., ISO 7726:1998 Ergonomics of the thermal environment—instruments for measuring physical quantities
26.
go back to reference Krajčík M, Simone A, Olesen BW (2012) Air distribution and ventilation effectiveness in an occupied room heated by warm air. Energy Build 55:94–101CrossRef Krajčík M, Simone A, Olesen BW (2012) Air distribution and ventilation effectiveness in an occupied room heated by warm air. Energy Build 55:94–101CrossRef
27.
go back to reference Buratti C, Mariani R, Moretti E (2011) Mean age of air in a naturally ventilated office: experimental data and simulations. Energy Build 43(8):2021–2027CrossRef Buratti C, Mariani R, Moretti E (2011) Mean age of air in a naturally ventilated office: experimental data and simulations. Energy Build 43(8):2021–2027CrossRef
28.
go back to reference Ning M, Mengjie S, Mingyin C, Dongmei P, Shiming D (2016) Computational fluid dynamics (CFD) modelling of air flow field, mean age of air and CO2 distributions inside a bedroom with different heights of conditioned air supply outlet. Appl Energy 164:906–915CrossRef Ning M, Mengjie S, Mingyin C, Dongmei P, Shiming D (2016) Computational fluid dynamics (CFD) modelling of air flow field, mean age of air and CO2 distributions inside a bedroom with different heights of conditioned air supply outlet. Appl Energy 164:906–915CrossRef
29.
go back to reference Amai H, Liu S, Novoselac A (2017) Experimental study on air change effectiveness: Improving air distribution with all-air heating systems. Build Environ 125:515–527CrossRef Amai H, Liu S, Novoselac A (2017) Experimental study on air change effectiveness: Improving air distribution with all-air heating systems. Build Environ 125:515–527CrossRef
30.
go back to reference ANSI/ASHRAE Standard 55–2020, Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta, USA ANSI/ASHRAE Standard 55–2020, Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta, USA
31.
go back to reference Mao N, Song M, Deng S (2016) Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort. Appl Energy 180:536–545CrossRef Mao N, Song M, Deng S (2016) Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort. Appl Energy 180:536–545CrossRef
32.
go back to reference Zhang S, Huang P, Sun Y (2016) A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties. Energy 94:654–665CrossRef Zhang S, Huang P, Sun Y (2016) A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties. Energy 94:654–665CrossRef
Metadata
Title
Performance of Stratum Ventilated Heating for Sleeping Environment
Authors
Jian Liu
Zhang Lin
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6855-4_15