Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-12-2019 | Research | Issue 1/2019 Open Access

Human-centric Computing and Information Sciences 1/2019

Performance prediction of data streams on high-performance architecture

Journal:
Human-centric Computing and Information Sciences > Issue 1/2019
Authors:
Bhaskar Gautam, Annappa Basava

Abstract

Worldwide sensor streams are expanding continuously with unbounded velocity in volume, and for this acceleration, there is an adaptation of large stream data processing system from the homogeneous to rack-scale architecture which makes serious concern in the domain of workload optimization, scheduling, and resource management algorithms. Our proposed framework is based on providing architecture independent performance prediction model to enable resource adaptive distributed stream data processing platform. It is comprised of seven pre-defined domain for dynamic data stream metrics including a self-driven model which tries to fit these metrics using ridge regularization regression algorithm. Another significant contribution lies in fully-automated performance prediction model inherited from the state-of-the-art distributed data management system for distributed stream processing systems using Gaussian processes regression that cluster metrics with the help of dimensionality reduction algorithm. We implemented its base on Apache Heron and evaluated with proposed Benchmark Suite comprising of five domain-specific topologies. To assess the proposed methodologies, we forcefully ingest tuple skewness among the benchmarking topologies to set up the ground truth for predictions and found that accuracy of predicting the performance of data streams increased up to 80.62% from 66.36% along with the reduction of error from 37.14 to 16.06%.

Our product recommendations

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Show more products
Literature
About this article

Other articles of this Issue 1/2019

Human-centric Computing and Information Sciences 1/2019 Go to the issue

Premium Partner

    Image Credits