Skip to main content
Top
Published in: Energy Efficiency 3/2017

13-10-2016 | Original Article

Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions

Authors: A. Žandeckis, V. Kirsanovs, M. Dzikēvičs, K. Kļaviņa

Published in: Energy Efficiency | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The low energy consumption of new housing, together with low temperature space heating solutions, provides a great deal of potential for an improvement to the thermal and environmental performance of heat-generating technologies and heat loss reduction in heating systems. The objective of this work is to evaluate the performance of a pellet and solar combisystem at different temperature ranges in a space heating (SH) system. The dynamic system simulation was performed in TRNSYS. Four SH temperature ranges will be assessed through different cases. For every SH temperature range, two cases were simulated—with and without an electric auxiliary heater. A system without solar collectors was used for the reference cases. The study will show that in the different cases, the reduction of the SH temperature allows for the reduction of temperature setpoints for the pellet boiler. A higher thermal performance of heat-generating technologies, lower heat losses and lower CO emissions can then be reached as a result. A further reduction of SH temperature will lead to slightly higher solar gains and a lower amount of total CO emissions. At the same time, higher heat losses from some components and lower or similar fractional thermal energy savings were observed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Buker, S. M., & Riffat, S. B. (2016). Solar assisted heat pump systems for low temperature water heating applications: a systematic review. Renewable and Sustainable Energy Reviews, 55, 399–413.CrossRef Buker, S. M., & Riffat, S. B. (2016). Solar assisted heat pump systems for low temperature water heating applications: a systematic review. Renewable and Sustainable Energy Reviews, 55, 399–413.CrossRef
go back to reference Busato, F., Lazzarin, R.M., & Noro, M. (2013). Two years of recorded data for a multisource heat pump system: A performance analysis. Applied Thermal Engineering, 39–47. Busato, F., Lazzarin, R.M., & Noro, M. (2013). Two years of recorded data for a multisource heat pump system: A performance analysis. Applied Thermal Engineering, 39–47.
go back to reference Deng, J., Tian, Z., Fan, J., Yang, M., Furbo, S., & Wang, Z. (2016). Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing. Energy and Buildings, 126, 2–13.CrossRef Deng, J., Tian, Z., Fan, J., Yang, M., Furbo, S., & Wang, Z. (2016). Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing. Energy and Buildings, 126, 2–13.CrossRef
go back to reference Druck, H. (2006). MULTIPORT store—model for TRNSYS. Stuttgart: Universitat Stuttgart. Druck, H. (2006). MULTIPORT store—model for TRNSYS. Stuttgart: Universitat Stuttgart.
go back to reference Elmegaard, B., Ommen, T. S., Markussen, M., & Iversen, J. (2016). Integration of space heating and hot water supply in low temperature district heating. Energy and Buildings, 124, 255–264.CrossRef Elmegaard, B., Ommen, T. S., Markussen, M., & Iversen, J. (2016). Integration of space heating and hot water supply in low temperature district heating. Energy and Buildings, 124, 255–264.CrossRef
go back to reference Fabrizio, E., & Seguro, F. F. (2014). Integrated HVAC and DHW production systems for zero energy buildings. Renewable and Sustainable Energy Reviews, 515–541. Fabrizio, E., & Seguro, F. F. (2014). Integrated HVAC and DHW production systems for zero energy buildings. Renewable and Sustainable Energy Reviews, 515–541.
go back to reference Fiedler, F., & Persson, T. (2009a). Annual co-emissions of combined pellet and solar heating systems. Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 2468–2472. Fiedler, F., & Persson, T. (2009a). Annual co-emissions of combined pellet and solar heating systems. Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 2468–2472.
go back to reference Fiedler, F., & Persson, T. (2009b). Carbon monoxide emissions of combined pellet and solar heating systems. Applied Energy, 86(2), 135–143.CrossRef Fiedler, F., & Persson, T. (2009b). Carbon monoxide emissions of combined pellet and solar heating systems. Applied Energy, 86(2), 135–143.CrossRef
go back to reference Hasan, A., Kurnitski, J., & Jokiranta, K. (2009). A combined low temperature water heating system consisting of radiators and floor heating. Energy and Buildings, 41(5), 470–479.CrossRef Hasan, A., Kurnitski, J., & Jokiranta, K. (2009). A combined low temperature water heating system consisting of radiators and floor heating. Energy and Buildings, 41(5), 470–479.CrossRef
go back to reference Kalogirou, S. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30(3), 231–295.CrossRef Kalogirou, S. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30(3), 231–295.CrossRef
go back to reference Kofinger, M., Basciotti, D., Schmidt, R. R., Meissner, E., Doczekal, C., & Giovannini, A. (2016). Low temperature district heating in Austria: energetic, ecologic and economic comparison of four case studies. Energy, 1–10. Kofinger, M., Basciotti, D., Schmidt, R. R., Meissner, E., Doczekal, C., & Giovannini, A. (2016). Low temperature district heating in Austria: energetic, ecologic and economic comparison of four case studies. Energy, 1–10.
go back to reference Laboratory, S. E. (2007). TRNSYS 16, a transient system simulation program. Volume 1. Madison: Solar Energy Laboratory, University of Wisconsin-Madison. Laboratory, S. E. (2007). TRNSYS 16, a transient system simulation program. Volume 1. Madison: Solar Energy Laboratory, University of Wisconsin-Madison.
go back to reference Letz, T., Bales, C., & Perers, B. (2009). A new concept for combisystem characterization: the FSC method. Solar Energy, 83(9), 1540–1549.CrossRef Letz, T., Bales, C., & Perers, B. (2009). A new concept for combisystem characterization: the FSC method. Solar Energy, 83(9), 1540–1549.CrossRef
go back to reference LVS (2012). LVS EN 303-5:2012. “heating boilers—part 5: heating boilers for solid fuels, hand and automatically stocked, nominal heat output of up to 300 kW—terminology, requirements, testing and marking”. Riga: Latvijas Standarts. LVS (2012). LVS EN 303-5:2012. “heating boilers—part 5: heating boilers for solid fuels, hand and automatically stocked, nominal heat output of up to 300 kW—terminology, requirements, testing and marking”. Riga: Latvijas Standarts.
go back to reference Ma, C., Liu, Y., Song, C., & Wang, D. (2014). The intermittent operation control strategy of low-temperature hot-water floor radiant heating system. Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, 263, 259–268.CrossRef Ma, C., Liu, Y., Song, C., & Wang, D. (2014). The intermittent operation control strategy of low-temperature hot-water floor radiant heating system. Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, 263, 259–268.CrossRef
go back to reference Martinez, P., Velazquez, A., & Viedma, A. (2005). Performance analysis of a solar energy driven heating system. Renewable Energy, 37(10), 1028–1034. Martinez, P., Velazquez, A., & Viedma, A. (2005). Performance analysis of a solar energy driven heating system. Renewable Energy, 37(10), 1028–1034.
go back to reference Mlecnik, E. (2012). Defining nearly zero-energy housing in Belgium and the Netherlands. Energy Efficiency, 5(3), 411–431.CrossRef Mlecnik, E. (2012). Defining nearly zero-energy housing in Belgium and the Netherlands. Energy Efficiency, 5(3), 411–431.CrossRef
go back to reference Nordlander, S. (2003). TRNSYS model for Type 210. Pellet stove with liquid heat exchanger. Borlange: Hogskolan Dalarna. Nordlander, S. (2003). TRNSYS model for Type 210. Pellet stove with liquid heat exchanger. Borlange: Hogskolan Dalarna.
go back to reference Ostergaard, D. S., & Svendsen, S. (2016). Case study of low-temperature heating in an existing single-family house—a test of methods for simulation of heating system temperatures. Energy and Buildings, 126, 535–544.CrossRef Ostergaard, D. S., & Svendsen, S. (2016). Case study of low-temperature heating in an existing single-family house—a test of methods for simulation of heating system temperatures. Energy and Buildings, 126, 535–544.CrossRef
go back to reference Persson, T., Fiedler, F., Nordlander, S., Bales, C., & Paavilainen, J. (2009). Validation of a dynamic model for wood pellet boiles and stoves. Applied Energy, 86(5), 645–656.CrossRef Persson, T., Fiedler, F., Nordlander, S., Bales, C., & Paavilainen, J. (2009). Validation of a dynamic model for wood pellet boiles and stoves. Applied Energy, 86(5), 645–656.CrossRef
go back to reference Persson, T., Fiedler, F., & Nordlander, S. (2012). Methodology for identifying parameters for the TRNSYS model Type-210—wood pellet stoves and boilers. Borlange: Hogskolan Dalarna. Persson, T., Fiedler, F., & Nordlander, S. (2012). Methodology for identifying parameters for the TRNSYS model Type-210—wood pellet stoves and boilers. Borlange: Hogskolan Dalarna.
go back to reference Rekstad, J., Meir, M., & Kristoffersen, A. (2003). Control and energy metering in low temperature heating systems. Energy and Buildings, 35(3), 281–291.CrossRef Rekstad, J., Meir, M., & Kristoffersen, A. (2003). Control and energy metering in low temperature heating systems. Energy and Buildings, 35(3), 281–291.CrossRef
go back to reference Ren, J., Zhu, L., Wang, Y., Wang, C., & Xiong, W. (2010). Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies. Solar Energy, 84(6), 1072–1083.CrossRef Ren, J., Zhu, L., Wang, Y., Wang, C., & Xiong, W. (2010). Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies. Solar Energy, 84(6), 1072–1083.CrossRef
go back to reference Sakellari, D., Forsen, M., & Lundqvist, P. (2006). Investigating control strategies for a domestic low-temperature heat pump heating system. International Journal of Refrigeration, 29(4), 547–555.CrossRef Sakellari, D., Forsen, M., & Lundqvist, P. (2006). Investigating control strategies for a domestic low-temperature heat pump heating system. International Journal of Refrigeration, 29(4), 547–555.CrossRef
go back to reference Sarbu, I., & Sebarchievici, C. (2014). A study of the performances of low-temperature heating systems. Energy Efficiency. Sarbu, I., & Sebarchievici, C. (2014). A study of the performances of low-temperature heating systems. Energy Efficiency.
go back to reference Sattari, S., & Farhanieh, B. (2006). A parametric study on radiant floor heating system performance. Renewable Energy, 31(10), 1617–1626.CrossRef Sattari, S., & Farhanieh, B. (2006). A parametric study on radiant floor heating system performance. Renewable Energy, 31(10), 1617–1626.CrossRef
go back to reference Weiss, W. (2003). Solar heating systems for houses. A design handbook for solar combisystems. London: James & James. Weiss, W. (2003). Solar heating systems for houses. A design handbook for solar combisystems. London: James & James.
go back to reference Win, K. M., & Persson, T. (2014). Emissions from residential wood pellet boilers and stove characterized into start-up, steady operation, and stop emissions. Energy & Fuels, 28(4), 2496–2505.CrossRef Win, K. M., & Persson, T. (2014). Emissions from residential wood pellet boilers and stove characterized into start-up, steady operation, and stop emissions. Energy & Fuels, 28(4), 2496–2505.CrossRef
go back to reference Yang, X., Li, H., & Svendsen, S. (2016a). Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating. Energy, 109, 248–259.CrossRef Yang, X., Li, H., & Svendsen, S. (2016a). Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating. Energy, 109, 248–259.CrossRef
go back to reference Yang, X., Li, H., & Svendsen, S. (2016b). Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark. Energy Conversion and Management, 122, 142–152.CrossRef Yang, X., Li, H., & Svendsen, S. (2016b). Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark. Energy Conversion and Management, 122, 142–152.CrossRef
go back to reference You, T., Wang, B., Wu, W., Shi, W., & Li, X. (2015). Performance analysis of hybrid ground-coupled heat pump system with multi-functions. Energy Conversion and Management, 92, 47–59.CrossRef You, T., Wang, B., Wu, W., Shi, W., & Li, X. (2015). Performance analysis of hybrid ground-coupled heat pump system with multi-functions. Energy Conversion and Management, 92, 47–59.CrossRef
go back to reference Žandeckis, A. (2012). Saules un granulu kombinētā sistēma. Eksperimentālā izpēte un optimizācija. Doctoral thesis. Riga: Riga Technical University. Žandeckis, A. (2012). Saules un granulu kombinētā sistēma. Eksperimentālā izpēte un optimizācija. Doctoral thesis. Riga: Riga Technical University.
go back to reference Zhai, X., Yang, J., & Wang, R. (2009). Design and performance of the solar-powered floor heating system in a green building. Renewable Energy, 34(7), 1700–1708.CrossRef Zhai, X., Yang, J., & Wang, R. (2009). Design and performance of the solar-powered floor heating system in a green building. Renewable Energy, 34(7), 1700–1708.CrossRef
Metadata
Title
Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions
Authors
A. Žandeckis
V. Kirsanovs
M. Dzikēvičs
K. Kļaviņa
Publication date
13-10-2016
Publisher
Springer Netherlands
Published in
Energy Efficiency / Issue 3/2017
Print ISSN: 1570-646X
Electronic ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-016-9482-3

Other articles of this Issue 3/2017

Energy Efficiency 3/2017 Go to the issue