Skip to main content
Top
Published in:

17-10-2022

Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease

Published in: Annals of Data Science | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent times, various machine learning approaches have been widely employed for effective diagnosis and prediction of diseases like cancer, thyroid, Covid-19, etc. Likewise, Alzheimer’s (AD) is also one progressive malady that destroys memory and cognitive function over time. Unfortunately, there are no dedicated AI-based solutions for diagnoses of AD to go hand in hand with medical diagnosis, even though multiple factors contribute to the diagnosis, making AI a very viable supplementary diagnostic solution. This paper reports an endeavor to apply various machine learning algorithms like SGD, k-Nearest Neighbors, Logistic Regression, Decision tree, Random Forest, AdaBoost, Neural Network, SVM, and Naïve Bayes on the dataset of affected victims to diagnose Alzheimer’s disease. Longitudinal collections of subjects from OASIS dataset have been used for prediction. Moreover, some feature selection and dimension reduction methods like Information Gain, Information Gain Ratio, Gini index, Chi-Squared, and PCA are applied to rank different factors and identify the optimum number of factors from the dataset for disease diagnosis. Furthermore, performance is evaluated of each classifier in terms of ROC-AUC, accuracy, F1 score, recall, and precision as well as included comparative analysis between algorithms. Our study suggests that approximately 90% classification accuracy is observed under top-rated four features CDR, SES, nWBV, and EDUC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Gaugler J, James B, Marin A (2019) 2019 Alzheimer’s disease facts and figures Gaugler J, James B, Marin A (2019) 2019 Alzheimer’s disease facts and figures
4.
go back to reference Xu N, Shen Y, Zhu YY et al (2017) Internet of things, real-time decision making, and artificial intelligence. In: Mishra D, Buyya R, Mohapatra P, Patnaik S (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 107–115 Xu N, Shen Y, Zhu YY et al (2017) Internet of things, real-time decision making, and artificial intelligence. In: Mishra D, Buyya R, Mohapatra P, Patnaik S (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 107–115
8.
go back to reference Luo P, Kang G, Xu X (2020) A novel feature selection and classification method of Alzheimer’s disease based on multi-features in MRI. In: Proceedings of the 2020 10th international conference on bioscience, biochemistry and bioinformatics. Association for Computing Machinery, New York, NY, USA, pp 114–119 Luo P, Kang G, Xu X (2020) A novel feature selection and classification method of Alzheimer’s disease based on multi-features in MRI. In: Proceedings of the 2020 10th international conference on bioscience, biochemistry and bioinformatics. Association for Computing Machinery, New York, NY, USA, pp 114–119
10.
go back to reference Zheng X, Shi J, Zhang Q et al (2017) Improving MRI-based diagnosis of Alzheimer’s disease via an ensemble privileged information learning algorithm. In: Proceedings of 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp 456–459 Zheng X, Shi J, Zhang Q et al (2017) Improving MRI-based diagnosis of Alzheimer’s disease via an ensemble privileged information learning algorithm. In: Proceedings of 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp 456–459
11.
go back to reference Ji H, Liu Z, Yan WQ, Klette R (2019) Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd international conference on control and computer vision. Association for Computing Machinery, New York, NY, USA, pp 87–91 Ji H, Liu Z, Yan WQ, Klette R (2019) Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd international conference on control and computer vision. Association for Computing Machinery, New York, NY, USA, pp 87–91
12.
go back to reference Valliani A, Soni A (2017) Deep residual nets for improved Alzheimer’s diagnosis. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics. Association for Computing Machinery, New York, NY, USA, p 615 Valliani A, Soni A (2017) Deep residual nets for improved Alzheimer’s diagnosis. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics. Association for Computing Machinery, New York, NY, USA, p 615
13.
go back to reference Cherdal S, Mouline S (2016) Petri nets for modelling and analysing a complex system related to Alzheimer’s disease. In: Proceedings of the 31st annual ACM symposium on applied computing. Association for Computing Machinery, New York, NY, USA, pp 309–312 Cherdal S, Mouline S (2016) Petri nets for modelling and analysing a complex system related to Alzheimer’s disease. In: Proceedings of the 31st annual ACM symposium on applied computing. Association for Computing Machinery, New York, NY, USA, pp 309–312
14.
go back to reference McCrackin L (2018) Early detection of Alzheimer’s disease using deep learning. In: Bagheri E, Cheung JCK (eds) Advances in artificial intelligence. Springer, Cham, pp 355–359CrossRef McCrackin L (2018) Early detection of Alzheimer’s disease using deep learning. In: Bagheri E, Cheung JCK (eds) Advances in artificial intelligence. Springer, Cham, pp 355–359CrossRef
15.
go back to reference Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention-MICCAI, vol 10435, pp 3–11. https://doi.org/10.1007/978-3-319-66179-7_1 Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention-MICCAI, vol 10435, pp 3–11. https://​doi.​org/​10.​1007/​978-3-319-66179-7_​1
16.
go back to reference Zhao Y, He L (2015) Deep Learning in the EEG diagnosis of Alzheimer’s disease. In: Jawahar CV, Shan S (eds) Computer vision-ACCV 2014 workshops. Springer, Cham, pp 340–353CrossRef Zhao Y, He L (2015) Deep Learning in the EEG diagnosis of Alzheimer’s disease. In: Jawahar CV, Shan S (eds) Computer vision-ACCV 2014 workshops. Springer, Cham, pp 340–353CrossRef
17.
go back to reference Sun X, Hu L, Yao Y, Wang Y (2017) GSplit LBI: taming the procedural bias in neuroimaging for disease prediction. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 107–115 Sun X, Hu L, Yao Y, Wang Y (2017) GSplit LBI: taming the procedural bias in neuroimaging for disease prediction. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 107–115
18.
go back to reference Cao P, Liu X, Yang J et al (2017) Sparse multi-kernel based multi-task learning for joint prediction of clinical scores and biomarker identification in Alzheimer’s disease. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 195–202 Cao P, Liu X, Yang J et al (2017) Sparse multi-kernel based multi-task learning for joint prediction of clinical scores and biomarker identification in Alzheimer’s disease. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 195–202
20.
go back to reference Xu N, Shen Y, Zhu Y (2019) A multi-task learning framework for automatic early detection of Alzheimer’s. In: Li G, Yang J, Gama J et al (eds) Database systems for advanced applications. Springer, Cham, pp 240–243 Xu N, Shen Y, Zhu Y (2019) A multi-task learning framework for automatic early detection of Alzheimer’s. In: Li G, Yang J, Gama J et al (eds) Database systems for advanced applications. Springer, Cham, pp 240–243
21.
go back to reference Zhang P, Shi B, Smith CD, Liu J (2017) Nonlinear feature space transformation to improve the prediction of MCI to AD conversion. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 12–20 Zhang P, Shi B, Smith CD, Liu J (2017) Nonlinear feature space transformation to improve the prediction of MCI to AD conversion. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 12–20
22.
go back to reference Zhu X, Thung K-H, Adeli E et al (2017) Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 72–80 Zhu X, Thung K-H, Adeli E et al (2017) Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 72–80
23.
go back to reference Zhu Y, Kim M, Zhu X et al (2017) Personalized diagnosis for Alzheimer’s disease. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 205–213 Zhu Y, Kim M, Zhu X et al (2017) Personalized diagnosis for Alzheimer’s disease. In: Descoteaux M, Maier-Hein L, Franz A et al (eds) Medical image computing and computer assisted intervention-MICCAI 2017. Springer, Cham, pp 205–213
25.
go back to reference Liu S (2017) Alzheimer’s disease staging and prediction. In: Multimodal neuroimaging computing for the characterization of neurodegenerative disorders. Springer, Singapore, pp 95–108 Liu S (2017) Alzheimer’s disease staging and prediction. In: Multimodal neuroimaging computing for the characterization of neurodegenerative disorders. Springer, Singapore, pp 95–108
29.
go back to reference Palafox GDL, Ortíz ALS, Melendez OM, et al (2017) Hippocampal segmentation using mean shift algorithm. In: Proceeding of SPIE Palafox GDL, Ortíz ALS, Melendez OM, et al (2017) Hippocampal segmentation using mean shift algorithm. In: Proceeding of SPIE
30.
go back to reference Chen X, Zhao D, Zhong W (2019) Auxiliary recognition of Alzheimer’s disease based on Gaussian probability brain image segmentation model. In: Ning H (ed) Cyberspace data and intelligence, and cyber-living, syndrome, and health. Springer, Singapore, pp 513–520CrossRef Chen X, Zhao D, Zhong W (2019) Auxiliary recognition of Alzheimer’s disease based on Gaussian probability brain image segmentation model. In: Ning H (ed) Cyberspace data and intelligence, and cyber-living, syndrome, and health. Springer, Singapore, pp 513–520CrossRef
33.
go back to reference Brown SD, Myles AJ (2009) Decision tree modeling Brown SD, Myles AJ (2009) Decision tree modeling
34.
go back to reference Dash SS, Nayak SK, Mishra D (2021) A review on machine learning algorithms. In: Mishra D, Buyya R, Mohapatra P, Patnaik S (eds) Intelligent and cloud computing. Springer, Singapore, pp 495–507 Dash SS, Nayak SK, Mishra D (2021) A review on machine learning algorithms. In: Mishra D, Buyya R, Mohapatra P, Patnaik S (eds) Intelligent and cloud computing. Springer, Singapore, pp 495–507
36.
go back to reference Shi Y, Tian Y, Kou G, et al (2011) Support vector machines for classification problems. In: Optimization based data mining: theory and applications. Springer, London, pp 3–13 Shi Y, Tian Y, Kou G, et al (2011) Support vector machines for classification problems. In: Optimization based data mining: theory and applications. Springer, London, pp 3–13
37.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin
38.
go back to reference Shi Y (2022) Feature selection. In: Advances in big data analytics: theory, algorithms and practices. Springer, Singapore, pp 249–304 Shi Y (2022) Feature selection. In: Advances in big data analytics: theory, algorithms and practices. Springer, Singapore, pp 249–304
Metadata
Title
Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease
Publication date
17-10-2022
Published in
Annals of Data Science / Issue 1/2024
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-022-00452-2

Premium Partner