Skip to main content
Top

2019 | OriginalPaper | Chapter

34. Peridynamics: Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The peridynamic theory is a nonlocal extension of continuum mechanics that is compatible with the physical nature of cracks as discontinuities. It avoids the need to evaluate the partial derivatives of the deformation with respect to the spatial coordinates, instead using an integro-differential equation for the linear momentum balance. This chapter summarizes the peridynamic theory, emphasizing the continuum mechanical and thermodynamic aspects. Formulation of material models is discussed, including details on the statement of models using mathematical objects called peridynamic states that are nonlocal and nonlinear generalizations of second-order tensors. Damage evolution is treated within a nonlocal thermodynamic framework making use of the dependence of free energy on damage. Continuous, stable growth of damage can suddenly become unstable, leading to dynamic fracture. Peridynamics treats fracture and long-range forces on the same mathematical basis as continuous deformation and contact forces, extending the applicability of continuum mechanics to new classes of problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference F. Bobaru, M. Duangpanya, The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. 53, 4047–4059 (2010)CrossRef F. Bobaru, M. Duangpanya, The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. 53, 4047–4059 (2010)CrossRef
go back to reference F. Bobaru, M. Duangpanya, A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 231, 2764–2785 (2012)MathSciNetCrossRef F. Bobaru, M. Duangpanya, A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 231, 2764–2785 (2012)MathSciNetCrossRef
go back to reference S.R. Chowdhury, P. Roy, D. Roy, J. Reddy, A peridynamic theory for linear elastic shells. Int. J. Solids Struct. 84, 110–132 (2016)CrossRef S.R. Chowdhury, P. Roy, D. Roy, J. Reddy, A peridynamic theory for linear elastic shells. Int. J. Solids Struct. 84, 110–132 (2016)CrossRef
go back to reference B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRef B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRef
go back to reference C. Diyaroglu, E. Oterkus, S. Oterkus, E. Madenci, Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69, 152–168 (2015)CrossRef C. Diyaroglu, E. Oterkus, S. Oterkus, E. Madenci, Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69, 152–168 (2015)CrossRef
go back to reference E. Emmrich, O. Weckner, et al., On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)MathSciNetCrossRef E. Emmrich, O. Weckner, et al., On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)MathSciNetCrossRef
go back to reference J.T. Foster, S.A. Silling, W.W. Chen, Viscoplasticity using peridynamics. Int. J. Numer. Methods Eng. 81, 1242–1258 (2010)MATH J.T. Foster, S.A. Silling, W.W. Chen, Viscoplasticity using peridynamics. Int. J. Numer. Methods Eng. 81, 1242–1258 (2010)MATH
go back to reference E. Fried, New insights into the classical mechanics of particle systems. Discrete Contin. Dyn. Syst. 28, 1469–1504 (2010)MathSciNetCrossRef E. Fried, New insights into the classical mechanics of particle systems. Discrete Contin. Dyn. Syst. 28, 1469–1504 (2010)MathSciNetCrossRef
go back to reference W. Gerstle, N. Sau, S.A. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRef W. Gerstle, N. Sau, S.A. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRef
go back to reference W. Gerstle, S. Silling, D. Read, V. Tewary, R. Lehoucq, Peridynamic simulation of electromigration. Comput. Mater. Continua 8, 75–92 (2008) W. Gerstle, S. Silling, D. Read, V. Tewary, R. Lehoucq, Peridynamic simulation of electromigration. Comput. Mater. Continua 8, 75–92 (2008)
go back to reference W. Gerstle, N. Sakhavand, S. Chapman, Peridynamic and continuum models of reinforced concrete lap splice compared, in Fracture Mechanics of Concrete and Concrete Structures, Recent Advances in Fracture Mechanics of Concrete, ed. by B.H. Oh, et al. (2010), pp. 306–312 W. Gerstle, N. Sakhavand, S. Chapman, Peridynamic and continuum models of reinforced concrete lap splice compared, in Fracture Mechanics of Concrete and Concrete Structures, Recent Advances in Fracture Mechanics of Concrete, ed. by B.H. Oh, et al. (2010), pp. 306–312
go back to reference J. O'Grady, J. Foster, Peridynamic plates and flat shells: a non-ordinary, state-based model. Int. J. Solids Struct. 51, 4572–4579 (2014)CrossRef J. O'Grady, J. Foster, Peridynamic plates and flat shells: a non-ordinary, state-based model. Int. J. Solids Struct. 51, 4572–4579 (2014)CrossRef
go back to reference M.E. Gurtin, E. Fried, L. Anand, The mechanics and thermodynamics of continua (Cambridge University Press, Cambridge, 2010), pp. 232–233 M.E. Gurtin, E. Fried, L. Anand, The mechanics and thermodynamics of continua (Cambridge University Press, Cambridge, 2010), pp. 232–233
go back to reference W. Hu, Y.D. Ha, F. Bobaru, Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput. Methods Appl. Mech. Eng. 217, 247–261 (2012a)MathSciNetCrossRef W. Hu, Y.D. Ha, F. Bobaru, Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput. Methods Appl. Mech. Eng. 217, 247–261 (2012a)MathSciNetCrossRef
go back to reference W. Hu, Y.D. Ha, F. Bobaru, S.A. Silling, The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int. J. Fract. 176, 195–206 (2012b)CrossRef W. Hu, Y.D. Ha, F. Bobaru, S.A. Silling, The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int. J. Fract. 176, 195–206 (2012b)CrossRef
go back to reference W. Hu, Y. Wang, J. Yu, C.-F. Yen, F. Bobaru, Impact damage on a thin glass plate with a thin polycarbonate backing. Int. J. Impact Eng. 62, 152–165 (2013)CrossRef W. Hu, Y. Wang, J. Yu, C.-F. Yen, F. Bobaru, Impact damage on a thin glass plate with a thin polycarbonate backing. Int. J. Impact Eng. 62, 152–165 (2013)CrossRef
go back to reference B. Jeon, R.J. Stewart, I.Z. Ahmed, Peridynamic simulations of brittle structures with thermal residual deformation: strengthening and structural reactivity of glasses under impacts. Proc. R. Soc. A 471, 20150231. (2015)CrossRef B. Jeon, R.J. Stewart, I.Z. Ahmed, Peridynamic simulations of brittle structures with thermal residual deformation: strengthening and structural reactivity of glasses under impacts. Proc. R. Soc. A 471, 20150231. (2015)CrossRef
go back to reference A. Katiyar, J.T. Foster, H. Ouchi, M.M. Sharma, A peridynamic formulation of pressure driven convective fluid transport in porous media. J. Comput. Phys. 261, 209–229 (2014)MathSciNetCrossRef A. Katiyar, J.T. Foster, H. Ouchi, M.M. Sharma, A peridynamic formulation of pressure driven convective fluid transport in porous media. J. Comput. Phys. 261, 209–229 (2014)MathSciNetCrossRef
go back to reference B. Kilic, E. Madenci, Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int. J. Fract. 156, 165–177 (2009)CrossRef B. Kilic, E. Madenci, Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int. J. Fract. 156, 165–177 (2009)CrossRef
go back to reference R.B. Lehoucq, M.P. Sears, Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws. Phys. Rev. E 84, 031112 (2011)CrossRef R.B. Lehoucq, M.P. Sears, Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws. Phys. Rev. E 84, 031112 (2011)CrossRef
go back to reference R.B. Lehoucq, S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56, 1566–1577 (2008)MathSciNetCrossRef R.B. Lehoucq, S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56, 1566–1577 (2008)MathSciNetCrossRef
go back to reference R.B. Lehoucq, O.A. von Lilienfeld, Translation of Walter Noll’s derivation of the fundamental equations of continuum thermodynamics from statistical mechanics. J. Elast. 100, 5–24 (2010)CrossRef R.B. Lehoucq, O.A. von Lilienfeld, Translation of Walter Noll’s derivation of the fundamental equations of continuum thermodynamics from statistical mechanics. J. Elast. 100, 5–24 (2010)CrossRef
go back to reference E. Lejeune, C. Linder, Modeling tumor growth with peridynamics. Biomech. Model. Mechanobiol., 1–17 (2017a) E. Lejeune, C. Linder, Modeling tumor growth with peridynamics. Biomech. Model. Mechanobiol., 1–17 (2017a)
go back to reference E. Lejeune, C. Linder, Quantifying the relationship between cell division angle and morphogenesis through computational modeling. J. Theor. Biol. 418, 1–7 (2017b)MathSciNetCrossRef E. Lejeune, C. Linder, Quantifying the relationship between cell division angle and morphogenesis through computational modeling. J. Theor. Biol. 418, 1–7 (2017b)MathSciNetCrossRef
go back to reference E. Madenci, S. Oterkus, Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J. Mech. Phys. Solids 86, 192–219 (2016)MathSciNetCrossRef E. Madenci, S. Oterkus, Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J. Mech. Phys. Solids 86, 192–219 (2016)MathSciNetCrossRef
go back to reference J.A. Mitchell, A non-local, ordinary-state-based viscoelasticity model for peridynamics. Technical report SAND2011-8064, Sandia National Laboratories, Albuquerque/Livermore, October 2011a J.A. Mitchell, A non-local, ordinary-state-based viscoelasticity model for peridynamics. Technical report SAND2011-8064, Sandia National Laboratories, Albuquerque/Livermore, October 2011a
go back to reference J.A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics. Technical report SAND2011-3166, Sandia National Laboratories, Albuquerque/Livermore, October 2011b J.A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics. Technical report SAND2011-3166, Sandia National Laboratories, Albuquerque/Livermore, October 2011b
go back to reference S. Nadimi, State-based peridynamics simulation of hydraulic fracture phenomenon in geological media. Master’s thesis, The University of Utah, 2015 S. Nadimi, State-based peridynamics simulation of hydraulic fracture phenomenon in geological media. Master’s thesis, The University of Utah, 2015
go back to reference W. Noll, Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik. J. Ration. Mech. Anal. 4, 627–646 (1955.) In German, English translation availableMathSciNetMATH W. Noll, Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik. J. Ration. Mech. Anal. 4, 627–646 (1955.) In German, English translation availableMathSciNetMATH
go back to reference E. Oterkus, E. Madenci, Peridynamic analysis of fiber-reinforced composite materials. J. Mech. Mater. Struct. 7, 45–84 (2012)CrossRef E. Oterkus, E. Madenci, Peridynamic analysis of fiber-reinforced composite materials. J. Mech. Mater. Struct. 7, 45–84 (2012)CrossRef
go back to reference S. Oterkus, J. Fox, E. Madenci, Simulation of electro-migration through peridynamics, in 2013 IEEE 63rd Electronic Components and Technology Conference (IEEE, 2013), pp. 1488–1493 S. Oterkus, J. Fox, E. Madenci, Simulation of electro-migration through peridynamics, in 2013 IEEE 63rd Electronic Components and Technology Conference (IEEE, 2013), pp. 1488–1493
go back to reference S. Oterkus, E. Madenci, A. Agwai, Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids 64, 1–23 (2014a)MathSciNetCrossRef S. Oterkus, E. Madenci, A. Agwai, Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids 64, 1–23 (2014a)MathSciNetCrossRef
go back to reference H. Ouchi, A. Katiyar, J. Foster, M.M. Sharma, et al., A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs. in SPE Hydraulic Fracturing Technology Conference (Society of Petroleum Engineers, 2015) H. Ouchi, A. Katiyar, J. Foster, M.M. Sharma, et al., A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs. in SPE Hydraulic Fracturing Technology Conference (Society of Petroleum Engineers, 2015)
go back to reference N. Prakash, G.D. Seidel, A coupled electromechanical peridynamics framework for modeling carbon nanotube reinforced polymer composites, in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 0936, (2016) N. Prakash, G.D. Seidel, A coupled electromechanical peridynamics framework for modeling carbon nanotube reinforced polymer composites, in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 0936, (2016)
go back to reference S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRef S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRef
go back to reference S.A. Silling, Stability of peridynamic correspondence material models and their particle discretizations. Comput. Methods Appl. Mech. Eng. 322, 42–57 (2017)MathSciNetCrossRef S.A. Silling, Stability of peridynamic correspondence material models and their particle discretizations. Comput. Methods Appl. Mech. Eng. 322, 42–57 (2017)MathSciNetCrossRef
go back to reference S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRef S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRef
go back to reference S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNetCrossRef S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNetCrossRef
go back to reference S.A. Silling, R.B. Lehoucq, The peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–166 (2010)CrossRef S.A. Silling, R.B. Lehoucq, The peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–166 (2010)CrossRef
go back to reference S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetCrossRef S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetCrossRef
go back to reference S.A. Silling, D. Littlewood, P. Seleson, Variable horizon in a peridynamic medium. J. Mech. Mater. Struct. 10, 591–612 (2015)MathSciNetCrossRef S.A. Silling, D. Littlewood, P. Seleson, Variable horizon in a peridynamic medium. J. Mech. Mater. Struct. 10, 591–612 (2015)MathSciNetCrossRef
go back to reference S.A. Silling, M.L. Parks, J.R. Kamm, O. Weckner, M. Rassaian, Modeling shockwaves and impact phenomena with Eulerian peridynamics. Int. J. Impact Eng. 107, 47–57 (2017)CrossRef S.A. Silling, M.L. Parks, J.R. Kamm, O. Weckner, M. Rassaian, Modeling shockwaves and impact phenomena with Eulerian peridynamics. Int. J. Impact Eng. 107, 47–57 (2017)CrossRef
go back to reference S. Sun, V. Sundararaghavan, A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)CrossRef S. Sun, V. Sundararaghavan, A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)CrossRef
go back to reference M. Taylor, I. Gözen, S. Patel, A. Jesorka, K. Bertoldi, Peridynamic modeling of ruptures in biomembranes. PLoS One 11, e0165947 (2016)CrossRef M. Taylor, I. Gözen, S. Patel, A. Jesorka, K. Bertoldi, Peridynamic modeling of ruptures in biomembranes. PLoS One 11, e0165947 (2016)CrossRef
go back to reference M. Tupek, R. Radovitzky, An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. J. Mech. Phys. Solids 65, 82–92 (2014)MathSciNetCrossRef M. Tupek, R. Radovitzky, An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. J. Mech. Phys. Solids 65, 82–92 (2014)MathSciNetCrossRef
go back to reference C.W. Van Der Merwe, A peridynamic model for sleeved hydraulic fracture. Master’s thesis, Stellenbosch University, Stellenbosch, (2014) C.W. Van Der Merwe, A peridynamic model for sleeved hydraulic fracture. Master’s thesis, Stellenbosch University, Stellenbosch, (2014)
go back to reference T.L. Warren, S.A. Silling, A. Askari, O. Weckner, M.A. Epton, J. Xu, A nonordinary state-based peridynamic method to model solid material deformation and fracture. Int. J. Solids Struct. 46, 1186–1195 (2009)CrossRef T.L. Warren, S.A. Silling, A. Askari, O. Weckner, M.A. Epton, J. Xu, A nonordinary state-based peridynamic method to model solid material deformation and fracture. Int. J. Solids Struct. 46, 1186–1195 (2009)CrossRef
go back to reference O. Weckner, N.A.N. Mohamed, Viscoelastic material models in peridynamics. Appl. Math. Comput. 219, 6039–6043 (2013)MathSciNetMATH O. Weckner, N.A.N. Mohamed, Viscoelastic material models in peridynamics. Appl. Math. Comput. 219, 6039–6043 (2013)MathSciNetMATH
go back to reference R. Wildman, G. Gazonas, A dynamic electro-thermo-mechanical model of dielectric breakdown in solids using peridynamics. J. Mech. Mater. Struct. 10, 613–630 (2015)MathSciNetCrossRef R. Wildman, G. Gazonas, A dynamic electro-thermo-mechanical model of dielectric breakdown in solids using peridynamics. J. Mech. Mater. Struct. 10, 613–630 (2015)MathSciNetCrossRef
Metadata
Title
Peridynamics: Introduction
Author
S. A. Silling
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_29

Premium Partners