Skip to main content
Top
Published in: Quantum Information Processing 10/2019

01-10-2019

Permutation-based special linear transforms with application in quantum image encryption algorithm

Authors: Mubashar Khan, Amer Rasheed

Published in: Quantum Information Processing | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A cryptographic system based on substitution–permutation network involves various linear and affine transforms in order to create diffusion in the ciphertext. In this paper, special linear unitary transforms associated with permutations of n distinct objects are designed. These transforms are composed of n components each of which is a controlled NOT operation. The domain of special linear transforms is the \(2^n\)-dimensional Hilbert space \({{\mathbb {H}}}^{\otimes n}\), and these transforms define bijection from the set of computational basis onto itself. The latter characteristic of these transforms has enabled us to propose an efficient quantum image scrambling strategy. The application of special linear transform on the quantum state, which represents pixels positional information, results in the scrambled quantum state of positional information. On the other hand, its application on quantum state representing pixels value produces the encrypted quantum state. Accordingly, an efficient quantum image encryption algorithm based on special linear transforms and Chen chaotic dynamical system is presented for the novel quantum representation of color digital images (NCQI) model. Firstly, a selected pair of special linear transforms is employed to scramble the quantum image state of the original image. Then, the scrambled image is processed under the controlled special linear transforms determined by the values of three sequences generated from Chen chaotic system. The objective of this part is to encrypt color information of red, green and blue layers of the image. For an image of size \(2^n \times 2^n\), the time complexity of the proposed quantum image scrambling method is 2n while the time complexity of the proposed quantum image encryption algorithm is \(O(2^{2n})\), which is linear in the size of image. Finally, the simulation experiments are performed in order to measure the strength of proposed encryption algorithm. It is evident from the analyses of the simulation results that the newly proposed algorithm is fast, secure and reliable.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATH
3.
go back to reference Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)ADSMathSciNetCrossRef Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)ADSMathSciNetCrossRef
4.
go back to reference Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994)
5.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)
6.
go back to reference Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation, vol. 5105, pp. 137–148. International Society for Optics and Photonics (2003) Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation, vol. 5105, pp. 137–148. International Society for Optics and Photonics (2003)
8.
go back to reference Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRef Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRef
9.
go back to reference Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRef Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRef
10.
go back to reference Zhang, Y., Kai, L., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef Zhang, Y., Kai, L., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef
11.
go back to reference Zhang, Y., Kai, L., Gao, Y., Kai, X.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRef Zhang, Y., Kai, L., Gao, Y., Kai, X.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRef
12.
go back to reference Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)CrossRef Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)CrossRef
13.
15.
16.
go back to reference Jiang, N., Wen-Ya, W., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRef Jiang, N., Wen-Ya, W., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRef
17.
go back to reference Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRef Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRef
18.
go back to reference Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRef Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRef
19.
go back to reference Zhou, R.-G., Sun, Y.-J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)ADSMathSciNetCrossRef Zhou, R.-G., Sun, Y.-J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)ADSMathSciNetCrossRef
20.
go back to reference Liang, H.-R., Tao, X.-Y., Zhou, N.-R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15(7), 2701–2724 (2016)ADSMathSciNetCrossRef Liang, H.-R., Tao, X.-Y., Zhou, N.-R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15(7), 2701–2724 (2016)ADSMathSciNetCrossRef
21.
go back to reference Zhou, N., Yiqun, H., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 164 (2017)ADSMathSciNetCrossRef Zhou, N., Yiqun, H., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 164 (2017)ADSMathSciNetCrossRef
22.
go back to reference Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3d Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process. 17(12), 338 (2018)ADSCrossRef Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3d Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process. 17(12), 338 (2018)ADSCrossRef
23.
go back to reference Li, P., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(6), 1961–1982 (2017)MathSciNetCrossRef Li, P., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(6), 1961–1982 (2017)MathSciNetCrossRef
24.
go back to reference Li, X.-Z., Chen, W.-W., Wang, Y.-Q.: Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int. J. Theor. Phys. 57(9), 2904–2919 (2018)CrossRef Li, X.-Z., Chen, W.-W., Wang, Y.-Q.: Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int. J. Theor. Phys. 57(9), 2904–2919 (2018)CrossRef
25.
go back to reference Wang, J., Geng, Y.-C., Han, L., Liu, J.-Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 58(1), 308–322 (2019)CrossRef Wang, J., Geng, Y.-C., Han, L., Liu, J.-Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 58(1), 308–322 (2019)CrossRef
26.
go back to reference Heidari, S., Vafaei, M., Houshmand, M., Tabatabaey-Mashadi, N.: A dual quantum image scrambling method. Quantum Inf. Process. 18(1), 9 (2019)ADSCrossRef Heidari, S., Vafaei, M., Houshmand, M., Tabatabaey-Mashadi, N.: A dual quantum image scrambling method. Quantum Inf. Process. 18(1), 9 (2019)ADSCrossRef
27.
go back to reference Jiang, N., Dong, X., Hu, H., Ji, Z., Zhang, W.: Quantum image encryption based on Henon mapping. Int. J. Theor. Phys. 58, 1–13 (2019)MathSciNetCrossRef Jiang, N., Dong, X., Hu, H., Ji, Z., Zhang, W.: Quantum image encryption based on Henon mapping. Int. J. Theor. Phys. 58, 1–13 (2019)MathSciNetCrossRef
28.
go back to reference Tan, R.-C., Lei, T., Zhao, Q.-M., Gong, L.-H., Zhou, Z.-H.: Quantum color image encryption algorithm based on a hyper-chaotic system and quantum Fourier transform. Int. J. Theor. Phys. 55(12), 5368–5384 (2016)CrossRef Tan, R.-C., Lei, T., Zhao, Q.-M., Gong, L.-H., Zhou, Z.-H.: Quantum color image encryption algorithm based on a hyper-chaotic system and quantum Fourier transform. Int. J. Theor. Phys. 55(12), 5368–5384 (2016)CrossRef
29.
go back to reference Ran, Q., Wang, L., Ma, J., Tan, L., Siyuan, Y.: A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Process. 17(8), 188 (2018)ADSMathSciNetCrossRef Ran, Q., Wang, L., Ma, J., Tan, L., Siyuan, Y.: A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Process. 17(8), 188 (2018)ADSMathSciNetCrossRef
31.
go back to reference Yang, Y.-G., Jia, X., Sun, S.-J., Pan, Q.-X.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)CrossRef Yang, Y.-G., Jia, X., Sun, S.-J., Pan, Q.-X.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)CrossRef
32.
go back to reference Wang, L., Song, H., Liu, P.: A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt. Lasers Eng. 77, 118–125 (2016)CrossRef Wang, L., Song, H., Liu, P.: A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt. Lasers Eng. 77, 118–125 (2016)CrossRef
33.
go back to reference Yue, W., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013)MathSciNetCrossRef Yue, W., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013)MathSciNetCrossRef
Metadata
Title
Permutation-based special linear transforms with application in quantum image encryption algorithm
Authors
Mubashar Khan
Amer Rasheed
Publication date
01-10-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 10/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2410-7

Other articles of this Issue 10/2019

Quantum Information Processing 10/2019 Go to the issue