Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

29-04-2021 | Original Paper | Issue 1-2/2021

International Journal on Document Analysis and Recognition (IJDAR) 1-2/2021

Persian handwritten digit, character and word recognition using deep learning

Journal:
International Journal on Document Analysis and Recognition (IJDAR) > Issue 1-2/2021
Authors:
Mahdi Bonyani, Simindokht Jahangard, Morteza Daneshmand
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In spite of various applications of digit, letter and word recognition, only a few studies have dealt with Persian scripts. In this paper, deep neural networks are utilized through different DenseNet and Xception architectures, being further boosted by means of data augmentation and test time augmentation. Dividing the datasets to training, validation and test sets, and utilizing k-fold cross-validation, the comparison of the proposed method with various state-of-the-art alternatives is performed. Three datasets: HODA, Sadri and Iranshahr are used, which offer the most comprehensive collections of samples in terms of handwriting styles and the forms each letter may take depending on its position within a word. On the HODA dataset, we achieve recognition rates of 99.49% and 98.10% for digits and characters, being 99.72%, 89.99% and 98.82% for digits, characters and words from the Sadri dataset, respectively, as well as 98.99% for words from the Iranshahr dataset, each of which outperforms the performances achieved by the most advanced alternative networks, namely ResNet50 and VGG16. An additional contribution of the paper arises from its capability of words recognition as a holistic image classification. This improves the resulting speed and versatility significantly, as it does not require explicit character models, unlike earlier alternatives such as hidden Markov models and convolutional recursive neural networks. In addition, computation times have been compared with alternative state-of-the-art models and better performance has been observed.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1-2/2021

International Journal on Document Analysis and Recognition (IJDAR) 1-2/2021 Go to the issue

Premium Partner

    Image Credits