Skip to main content
Top
Published in:

30-01-2024

Person Re-identification with Spatial Multi-granularity Feature Exploration for Social Risk Situational Assessment

Authors: Mingfu Xiong, Hanmei Chen, Yi Wen, Abdul Khader Jilani Saudagar, Javier Del Ser, Khan Muhammad

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, the “human-oriented” concept of security development has become a consensus among all countries. This depends mainly on intelligent surveillance systems that can support person re-identification (Re-ID) technology to empower social risk situational assessment applications. However, existing Re-ID methods mainly focus on single and fixed convolutional operations for feature extraction, ignoring the multi-dimensional spatial association of the human body, which limits the performance of Re-ID. Human cognition when identifying people does not solely rely on visual cues of the individual in sight, but also on his/her behavioral and gestural characteristics. To solve this issue and inspired by the aforementioned cognitive mechanism of the human brain, this study developed a spatial multi-granularity feature exploration (SMGFE) model for person Re-ID. The proposed SMGFE model comprises two main steps: (i) a multi-granularity feature exploration strategy and (ii) a human spatial association scheme. The former mainly includes coarse (original person images), medium (multi-regional divided person images), and fine-tuned (keypoints of the human body) level features, which form the multi-granularity feature representation. An undirected graph model was then developed to construct multi-dimensional spatial relations for each person. Finally, the unified optimization strategy was applied to train the framework to achieve promising accuracy. We evaluated the proposed algorithm on frequently used and benchmark person Re-ID datasets (Market-1501 and DukeMTMC-reID). The cumulative match curve (CMC) and mean average precision (mAP), which are the common measuring criteria for most person Re-ID methods reported to date, were used to verify the experimental results. Experiments show that our proposed algorithm achieved unrivaled performance levels. In addition, based on the spatial multi-granularity feature exploration strategy, the time efficiency of the proposed method for detecting specific instances can reach O(n), making it suitable for deployment in low-resource terminals for security risk assessment, including Android/iOS analysis servers, urban safety risk surveillance systems, and warning platforms for situational awareness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
https://​www.​jimay.​com/​support/​, accessed on August 25, 2023.
 
2
https://​www.​jimay.​com/​support/​, accessed on August 25, 2023.
 
3
https://​www.​flir.​cn/​, accessed on August 25, 2023.
 
Literature
1.
go back to reference D’Aniello G. Fuzzy logic for situation awareness: a systematic review. J Ambient Intell Humaniz Comput. 2023;14(4):4419–38. D’Aniello G. Fuzzy logic for situation awareness: a systematic review. J Ambient Intell Humaniz Comput. 2023;14(4):4419–38.
2.
go back to reference Bellman K, Landauer C, Dutt N, Esterle L, Herkersdorf A, Jantsch A, TaheriNejad N, Lewis PR, Platzner M, Tammemäe K. Self-aware cyber-physical systems. ACM Trans Cyber-Phys Syst. 2020;4(4):1–26.CrossRef Bellman K, Landauer C, Dutt N, Esterle L, Herkersdorf A, Jantsch A, TaheriNejad N, Lewis PR, Platzner M, Tammemäe K. Self-aware cyber-physical systems. ACM Trans Cyber-Phys Syst. 2020;4(4):1–26.CrossRef
3.
go back to reference Gong S, Xiang T, Gong S, Xiang T. Person re-identification. Springer. 2011. Gong S, Xiang T, Gong S, Xiang T. Person re-identification. Springer. 2011.
4.
go back to reference Bedagkar-Gala A, Shah SK. A survey of approaches and trends in person re-identification. Image Vis Comput. 2014;32(4):270–86.CrossRef Bedagkar-Gala A, Shah SK. A survey of approaches and trends in person re-identification. Image Vis Comput. 2014;32(4):270–86.CrossRef
5.
go back to reference Suljagic H, Bayraktar E, Celebi N. Similarity based person re-identification for multi-object tracking using deep Siamese network. Neural Comput Appl. 2022;34(20):18171–82.CrossRef Suljagic H, Bayraktar E, Celebi N. Similarity based person re-identification for multi-object tracking using deep Siamese network. Neural Comput Appl. 2022;34(20):18171–82.CrossRef
6.
go back to reference Owayjan M, Dergham A, Haber G, Fakih N, Hamoush A, Abdo E. Face recognition security system. In: New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering. Springer; 2015. p. 343–8. Owayjan M, Dergham A, Haber G, Fakih N, Hamoush A, Abdo E. Face recognition security system. In: New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering. Springer; 2015. p. 343–8.
7.
go back to reference Zhou W, Lian J, Zhu S, Wu Y, Wang D-H. Vehicle re-identification by separating representative spatial features. Cognit Comput. 2023;1–16. Zhou W, Lian J, Zhu S, Wu Y, Wang D-H. Vehicle re-identification by separating representative spatial features. Cognit Comput. 2023;1–16.
8.
go back to reference Sun D, Huang J, Hu L, Tang J, Ding Z. Multitask multigranularity aggregation with global-guided attention for video person re-identification. IEEE Trans Circuits Syst Video Technol. 2022;32(11):7758–71.CrossRef Sun D, Huang J, Hu L, Tang J, Ding Z. Multitask multigranularity aggregation with global-guided attention for video person re-identification. IEEE Trans Circuits Syst Video Technol. 2022;32(11):7758–71.CrossRef
9.
go back to reference Wang G, Yuan Y, Chen X, Li J, Zhou X. Learning discriminative features with multiple granularities for person re-identification. In: International Conference on Multimedia. ACM; 2018. p. 274–82. Wang G, Yuan Y, Chen X, Li J, Zhou X. Learning discriminative features with multiple granularities for person re-identification. In: International Conference on Multimedia. ACM; 2018. p. 274–82.
10.
go back to reference Zou G, Fu G, Peng X, Liu Y, Gao M, Liu Z. Person re-identification based on metric learning: a survey. Multimed Tools Appl. 2021;80(17):26855–88.CrossRef Zou G, Fu G, Peng X, Liu Y, Gao M, Liu Z. Person re-identification based on metric learning: a survey. Multimed Tools Appl. 2021;80(17):26855–88.CrossRef
11.
go back to reference Liu D, Wu L, Hong R, Ge Z, Shen J, Boussaid F, Bennamoun M. Generative metric learning for adversarially robust open-world person re-identification. ACM Trans Multimed Comput Commun Appl. 2023;19(1):1–19.CrossRef Liu D, Wu L, Hong R, Ge Z, Shen J, Boussaid F, Bennamoun M. Generative metric learning for adversarially robust open-world person re-identification. ACM Trans Multimed Comput Commun Appl. 2023;19(1):1–19.CrossRef
13.
go back to reference Lu A, Zhang Z, Huang Y, Zhang Y, Li C, Tang J, Wang L. Illumination distillation framework for nighttime person re-identification and a new benchmark. IEEE Trans Multimed. 2023. Lu A, Zhang Z, Huang Y, Zhang Y, Li C, Tang J, Wang L. Illumination distillation framework for nighttime person re-identification and a new benchmark. IEEE Trans Multimed. 2023.
14.
go back to reference Zhuang Z, Wei L, Xie L, Zhang T, Zhang H, Wu H, Ai H, Tian Q. Rethinking the distribution gap of person re-identification with camera-based batch normalization. In: Proceedings of the European Conference on Computer Vision. Springer; 2020. p. 140–57. Zhuang Z, Wei L, Xie L, Zhang T, Zhang H, Wu H, Ai H, Tian Q. Rethinking the distribution gap of person re-identification with camera-based batch normalization. In: Proceedings of the European Conference on Computer Vision. Springer; 2020. p. 140–57.
15.
go back to reference Xiong M, Chen D, Lu X. Mobile person re-identification with a lightweight trident CNN. Sci China Inf Sci. 2020;63:1–3.CrossRef Xiong M, Chen D, Lu X. Mobile person re-identification with a lightweight trident CNN. Sci China Inf Sci. 2020;63:1–3.CrossRef
16.
go back to reference D’Aniello G, Gravina R, Gaeta M, Fortino G. Situation awareness in multi-user wearable computing systems. In: International Conference on Cognitive and Computational Aspects of Situation Management. IEEE; 2022. p. 133–8. D’Aniello G, Gravina R, Gaeta M, Fortino G. Situation awareness in multi-user wearable computing systems. In: International Conference on Cognitive and Computational Aspects of Situation Management. IEEE; 2022. p. 133–8.
17.
go back to reference Verhulsdonck G, Weible JL, Helser S, Hajduk N. Smart cities, playable cities, and cybersecurity: a systematic review. Int J Human-Comput Interact. 2023;39(2):378–90.CrossRef Verhulsdonck G, Weible JL, Helser S, Hajduk N. Smart cities, playable cities, and cybersecurity: a systematic review. Int J Human-Comput Interact. 2023;39(2):378–90.CrossRef
18.
go back to reference Savastano M, Suciu M-C, Gorelova I, Stativă G-A. How smart is mobility in smart cities? An analysis of citizens’ value perceptions through ICT applications. Cities. 2023;132:1040–71.CrossRef Savastano M, Suciu M-C, Gorelova I, Stativă G-A. How smart is mobility in smart cities? An analysis of citizens’ value perceptions through ICT applications. Cities. 2023;132:1040–71.CrossRef
19.
go back to reference Martín A, Fuentes-Hurtado F, Naranjo V, Camacho D. Evolving deep neural networks architectures for android malware classification. In: IEEE Congress on Evolutionary Computation. IEEE; 2017. p. 1659–66. Martín A, Fuentes-Hurtado F, Naranjo V, Camacho D. Evolving deep neural networks architectures for android malware classification. In: IEEE Congress on Evolutionary Computation. IEEE; 2017. p. 1659–66.
20.
go back to reference Zhao S. Graph-based multi-granularity person. In: Proceedings of International Conference on Image, Vision and Intelligent Systems 2022 (ICIVIS 2022), vol. 1019. Springer Nature; 2023. p. 11–31. Zhao S. Graph-based multi-granularity person. In: Proceedings of International Conference on Image, Vision and Intelligent Systems 2022 (ICIVIS 2022), vol. 1019. Springer Nature; 2023. p. 11–31.
21.
go back to reference Pan H, Chen Y, He Z. Multi-granularity graph pooling for video-based person re-identification. Neural Netw. 2023;160:22–33.CrossRef Pan H, Chen Y, He Z. Multi-granularity graph pooling for video-based person re-identification. Neural Netw. 2023;160:22–33.CrossRef
22.
go back to reference Gong X, Yao Z, Li X, Fan Y, Luo B, Fan J, Lao B. LAG-Net: multi-granularity network for person re-identification via local attention system. IEEE Trans Multimedia. 2021;24:217–29.CrossRef Gong X, Yao Z, Li X, Fan Y, Luo B, Fan J, Lao B. LAG-Net: multi-granularity network for person re-identification via local attention system. IEEE Trans Multimedia. 2021;24:217–29.CrossRef
23.
go back to reference Tu M, Zhu K, Guo H, Miao Q, Zhao C, Zhu G, Qiao H, Huang G, Tang M, Wang J. Multi-granularity mutual learning network for object re-identification. IEEE Trans Intell Transp Syst. 2022;23(9):15178–89.CrossRef Tu M, Zhu K, Guo H, Miao Q, Zhao C, Zhu G, Qiao H, Huang G, Tang M, Wang J. Multi-granularity mutual learning network for object re-identification. IEEE Trans Intell Transp Syst. 2022;23(9):15178–89.CrossRef
24.
go back to reference Wang Y, Zhang H, Miao D, Pedrycz W. Multi-granularity re-ranking for visible-infrared person re-identification. CAAI Trans Intell Technol. 2023. Wang Y, Zhang H, Miao D, Pedrycz W. Multi-granularity re-ranking for visible-infrared person re-identification. CAAI Trans Intell Technol. 2023.
25.
go back to reference Pan H, Bai Y, He Z, Zhang C. AAGCN: adjacency-aware graph convolutional network for person re-identification. Knowl-Based Syst. 2022;236:107300.CrossRef Pan H, Bai Y, He Z, Zhang C. AAGCN: adjacency-aware graph convolutional network for person re-identification. Knowl-Based Syst. 2022;236:107300.CrossRef
26.
go back to reference Huang M, Hou C, Yang Q, Wang Z. Reasoning and tuning: graph attention network for occluded person re-identification. IEEE Trans Image Process. 2023;32:1568–82.CrossRef Huang M, Hou C, Yang Q, Wang Z. Reasoning and tuning: graph attention network for occluded person re-identification. IEEE Trans Image Process. 2023;32:1568–82.CrossRef
27.
go back to reference Xian Y, Yang J, Yu F, Zhang J, Sun X. Graph-based self-learning for robust person re-identification. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision. IEEE; 2023. p. 4789–98. Xian Y, Yang J, Yu F, Zhang J, Sun X. Graph-based self-learning for robust person re-identification. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision. IEEE; 2023. p. 4789–98.
28.
go back to reference Liu S, Huang S, Fu W, Lin JC-W. A descriptive human visual cognitive strategy using graph neural network for facial expression recognition. Int J Mach Learn Cybern. 2022;1–17. Liu S, Huang S, Fu W, Lin JC-W. A descriptive human visual cognitive strategy using graph neural network for facial expression recognition. Int J Mach Learn Cybern. 2022;1–17.
29.
go back to reference Alonazi M, Alshahrani HM, Kouki F, Almalki NS, Mahmud A, Majdoubi J. Deep convolutional neural network with symbiotic organism search-based human activity recognition for cognitive health assessment. Biomimetics. 2023;8(7):554.CrossRef Alonazi M, Alshahrani HM, Kouki F, Almalki NS, Mahmud A, Majdoubi J. Deep convolutional neural network with symbiotic organism search-based human activity recognition for cognitive health assessment. Biomimetics. 2023;8(7):554.CrossRef
30.
go back to reference Cushen GA. A person re-identification system for mobile devices. In: 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE; 2015. p. 125–31. Cushen GA. A person re-identification system for mobile devices. In: 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE; 2015. p. 125–31.
31.
go back to reference Maqsood M, Yasmin S, Gillani S, Bukhari M, Rho S, Yeo S-S. An efficient deep learning-assisted person re-identification solution for intelligent video surveillance in smart cities. Front Comp Sci. 2023;17(4):174329.CrossRef Maqsood M, Yasmin S, Gillani S, Bukhari M, Rho S, Yeo S-S. An efficient deep learning-assisted person re-identification solution for intelligent video surveillance in smart cities. Front Comp Sci. 2023;17(4):174329.CrossRef
32.
go back to reference Dong C, Zhou J, An Q, Jiang F, Chen S, Pan L, Liu X. Optimizing performance in federated person re-identification through benchmark evaluation for blockchain-integrated smart UAV delivery systems. Drones. 2023;7(7):413.CrossRef Dong C, Zhou J, An Q, Jiang F, Chen S, Pan L, Liu X. Optimizing performance in federated person re-identification through benchmark evaluation for blockchain-integrated smart UAV delivery systems. Drones. 2023;7(7):413.CrossRef
33.
go back to reference Andrade RO, Yoo SG. Cognitive security: a comprehensive study of cognitive science in cybersecurity. J Inf Secur Appl. 2019;48:1023–52. Andrade RO, Yoo SG. Cognitive security: a comprehensive study of cognitive science in cybersecurity. J Inf Secur Appl. 2019;48:1023–52.
34.
go back to reference Mostafavi A, Yuan F. Smart flood resilience: harnessing community-scale big data for predictive flood risk monitoring, rapid impact assessment, and situational awareness. In: EGU General Assembly Conference Abstracts. 2022. p. EGU22–781. Mostafavi A, Yuan F. Smart flood resilience: harnessing community-scale big data for predictive flood risk monitoring, rapid impact assessment, and situational awareness. In: EGU General Assembly Conference Abstracts. 2022. p. EGU22–781.
35.
go back to reference Zhong X, Zhang X, Zhang P. Pipeline risk big data intelligent decision-making system based on machine learning and situation awareness. Neural Comput Appl. 2022;34(18):15221–39.CrossRef Zhong X, Zhang X, Zhang P. Pipeline risk big data intelligent decision-making system based on machine learning and situation awareness. Neural Comput Appl. 2022;34(18):15221–39.CrossRef
36.
go back to reference Mirza IB, Georgakopoulos D, Yavari A. Cyber-physical-social awareness platform for comprehensive situation awareness. Sensors. 2023;23(2):08–22.CrossRef Mirza IB, Georgakopoulos D, Yavari A. Cyber-physical-social awareness platform for comprehensive situation awareness. Sensors. 2023;23(2):08–22.CrossRef
37.
go back to reference Grajzl P, Murrell P. A macrohistory of legal evolution and coevolution: property, procedure, and contract in early-modern English caselaw. Int Rev Law Econ. 2023;73:106–13.CrossRef Grajzl P, Murrell P. A macrohistory of legal evolution and coevolution: property, procedure, and contract in early-modern English caselaw. Int Rev Law Econ. 2023;73:106–13.CrossRef
38.
go back to reference Yang T, Zhu S, Chen C, Yan S, Zhang M, Willis A. MutualNet: adaptive ConvNet via mutual learning from network width and resolution. In: Proceedings of the European Conference on Computer Vision. Springer; 2020. p. 299–315. Yang T, Zhu S, Chen C, Yan S, Zhang M, Willis A. MutualNet: adaptive ConvNet via mutual learning from network width and resolution. In: Proceedings of the European Conference on Computer Vision. Springer; 2020. p. 299–315.
39.
go back to reference Li Y, Jia S, Li Q. BalanceHRNet: an effective network for bottom-up human pose estimation. Neural Netw. 2023;161:297–305.CrossRef Li Y, Jia S, Li Q. BalanceHRNet: an effective network for bottom-up human pose estimation. Neural Netw. 2023;161:297–305.CrossRef
40.
go back to reference King DE. Dlib-ml: a machine learning toolkit. J Mach Learn Res. 2009;10:1755–8. King DE. Dlib-ml: a machine learning toolkit. J Mach Learn Res. 2009;10:1755–8.
41.
go back to reference Guo Y, Huang J, Xiong M, Wang Z, Hu X, Wang J, Hijji M. Facial expressions recognition with multi-region divided attention networks for smart education cloud applications. Neurocomputing. 2022;493:119–28.CrossRef Guo Y, Huang J, Xiong M, Wang Z, Hu X, Wang J, Hijji M. Facial expressions recognition with multi-region divided attention networks for smart education cloud applications. Neurocomputing. 2022;493:119–28.CrossRef
42.
go back to reference Daverio P, Chaudhry HN, Margara A, Rossi M. Temporal pattern recognition in graph data structures. In: International Conference on Big Data. IEEE; 2021. p. 2753–63. Daverio P, Chaudhry HN, Margara A, Rossi M. Temporal pattern recognition in graph data structures. In: International Conference on Big Data. IEEE; 2021. p. 2753–63.
43.
go back to reference Wang Z, Baladandayuthapani V, Kaseb AO, Amin HM, Hassan MM, Wang W, Morris JS. Bayesian edge regression in undirected graphical models to characterize interpatient heterogeneity in cancer. J Am Stat Assoc. 2022;117(538):533–46.MathSciNetCrossRef Wang Z, Baladandayuthapani V, Kaseb AO, Amin HM, Hassan MM, Wang W, Morris JS. Bayesian edge regression in undirected graphical models to characterize interpatient heterogeneity in cancer. J Am Stat Assoc. 2022;117(538):533–46.MathSciNetCrossRef
44.
go back to reference Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models. J Am Stat Assoc. 2009;104(486):735–46.MathSciNetCrossRef Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models. J Am Stat Assoc. 2009;104(486):735–46.MathSciNetCrossRef
45.
go back to reference Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q. Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision. IEEE; 2015. p. 1116–24. Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q. Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision. IEEE; 2015. p. 1116–24.
46.
go back to reference Guo J, Yuan Y, Huang L, Zhang C, Yao J-G, Han K. Beyond human parts: dual part-aligned representations for person re-identification. In: Proceedings of the International Conference on Computer Vision. IEEE; 2019. p. 3642–51. Guo J, Yuan Y, Huang L, Zhang C, Yao J-G, Han K. Beyond human parts: dual part-aligned representations for person re-identification. In: Proceedings of the International Conference on Computer Vision. IEEE; 2019. p. 3642–51.
47.
go back to reference Gray D, Brennan S, Tao H. Evaluating appearance models for recognition, reacquisition, and tracking. In: International Workshop on Performance Evaluation for Tracking and Surveillance, vol. 3. IEEE; 2007. p. 1–7. Gray D, Brennan S, Tao H. Evaluating appearance models for recognition, reacquisition, and tracking. In: International Workshop on Performance Evaluation for Tracking and Surveillance, vol. 3. IEEE; 2007. p. 1–7.
48.
go back to reference Recht B, Roelofs R, Schmidt L, Shankar V. Do ImageNet classifiers generalize to ImageNet? In: International Conference on Machine Learning. PMLR; 2019. p. 5389–400. Recht B, Roelofs R, Schmidt L, Shankar V. Do ImageNet classifiers generalize to ImageNet? In: International Conference on Machine Learning. PMLR; 2019. p. 5389–400.
49.
go back to reference Fu Y, Wei Y, Zhou Y, Shi H, Huang G, Wang X, Yao Z, Huang T. Horizontal pyramid matching for person re-identification. In: Proceedings of the AAAI conference on artificial intelligence, vol. 33. AAAI; 2019. p. 8295–302. Fu Y, Wei Y, Zhou Y, Shi H, Huang G, Wang X, Yao Z, Huang T. Horizontal pyramid matching for person re-identification. In: Proceedings of the AAAI conference on artificial intelligence, vol. 33. AAAI; 2019. p. 8295–302.
50.
go back to reference Zeng K, Ning M, Wang Y, Guo Y. Hierarchical clustering with hard-batch triplet loss for person re-identification. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition. IEEE; 2020. p. 13657–65. Zeng K, Ning M, Wang Y, Guo Y. Hierarchical clustering with hard-batch triplet loss for person re-identification. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition. IEEE; 2020. p. 13657–65.
51.
go back to reference Zhai Y, Lu S, Ye Q, Shan X, Chen J, Ji R, Tian Y. Ad-cluster: Augmented discriminative clustering for domain adaptive person re-identification. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. IEEE. 2020; p. 9021–30. Zhai Y, Lu S, Ye Q, Shan X, Chen J, Ji R, Tian Y. Ad-cluster: Augmented discriminative clustering for domain adaptive person re-identification. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. IEEE. 2020; p. 9021–30.
52.
go back to reference Quispe R, Pedrini H. Top-DB-Net: top dropblock for activation enhancement in person re-identification. In: Proceedings of the International Conference on Pattern Recognition. IEEE; 2021. p. 2980–7. Quispe R, Pedrini H. Top-DB-Net: top dropblock for activation enhancement in person re-identification. In: Proceedings of the International Conference on Pattern Recognition. IEEE; 2021. p. 2980–7.
53.
go back to reference Chen Y, Wang H, Sun X, Fan B, Tang C, Zeng H. Deep attention aware feature learning for person re-identification. Patt Recogn. 2022;126:108567.CrossRef Chen Y, Wang H, Sun X, Fan B, Tang C, Zeng H. Deep attention aware feature learning for person re-identification. Patt Recogn. 2022;126:108567.CrossRef
54.
go back to reference Ye M, Li H, Du B, Shen J, Shao L, Hoi SCH. Collaborative refining for person re-identification with label noise. IEEE Trans Image Process. 2022;31(2):379–91.CrossRef Ye M, Li H, Du B, Shen J, Shao L, Hoi SCH. Collaborative refining for person re-identification with label noise. IEEE Trans Image Process. 2022;31(2):379–91.CrossRef
55.
go back to reference Li J, Zhang S, Tian Q, Wang M, Gao W. Pose-guided representation learning for person re-identification. IEEE Trans Pattern Anal Mach Intell. 2022;44(2):622–35.CrossRef Li J, Zhang S, Tian Q, Wang M, Gao W. Pose-guided representation learning for person re-identification. IEEE Trans Pattern Anal Mach Intell. 2022;44(2):622–35.CrossRef
56.
go back to reference Xiang J, Huang Z, Jiang X, Hou J. Similarity learning with deep CRF for person re-identification. Patt Recogn. 2023;135:109151.CrossRef Xiang J, Huang Z, Jiang X, Hou J. Similarity learning with deep CRF for person re-identification. Patt Recogn. 2023;135:109151.CrossRef
57.
go back to reference Zhou J, Roy SK, Fang P, Harandi M, Petersson L. Cross-correlated attention networks for person re-identification. Image Vis Comput. 2020;100:1031–9.CrossRef Zhou J, Roy SK, Fang P, Harandi M, Petersson L. Cross-correlated attention networks for person re-identification. Image Vis Comput. 2020;100:1031–9.CrossRef
58.
go back to reference Travin A, Shur M, Strelets M, Spalart P. Detached-eddy simulations past a circular cylinder. Flow Turbul Combust. 2000;63(1–4):293–313.CrossRef Travin A, Shur M, Strelets M, Spalart P. Detached-eddy simulations past a circular cylinder. Flow Turbul Combust. 2000;63(1–4):293–313.CrossRef
59.
go back to reference Hernández A, Panizo Á, Camacho D. An ensemble algorithm based on deep learning for tuberculosis classification. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer; 2019. p. 145–54. Hernández A, Panizo Á, Camacho D. An ensemble algorithm based on deep learning for tuberculosis classification. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer; 2019. p. 145–54.
60.
go back to reference Horita F, Baptista J, de Albuquerque JP. Exploring the use of IOT data for heightened situational awareness in centralised monitoring control rooms. Inf Syst Front. 2023;25(1):275–90.CrossRef Horita F, Baptista J, de Albuquerque JP. Exploring the use of IOT data for heightened situational awareness in centralised monitoring control rooms. Inf Syst Front. 2023;25(1):275–90.CrossRef
Metadata
Title
Person Re-identification with Spatial Multi-granularity Feature Exploration for Social Risk Situational Assessment
Authors
Mingfu Xiong
Hanmei Chen
Yi Wen
Abdul Khader Jilani Saudagar
Javier Del Ser
Khan Muhammad
Publication date
30-01-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10249-5

Premium Partner