Skip to main content
Top

2019 | OriginalPaper | Chapter

Pharmacophore Modelling and Screening: Concepts, Recent Developments and Applications in Rational Drug Design

Authors : Chinmayee Choudhury, G. Narahari Sastry

Published in: Structural Bioinformatics: Applications in Preclinical Drug Discovery Process

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computational design of molecules with desired properties has become indispensable in many areas of research, particularly in the pharmaceutical industry and academia. Pharmacophore is one of the essential state-of-the-art techniques widely used in various ways in the computer-aided drug design projects. The pharmacophore modelling approaches have been an important part of many drug discovery strategies due to its simple yet diverse usage. It has been extensively applied for virtual screening, lead optimization, target identification, toxicity prediction and de novo lead design and has a huge scope for application in fragment-based drug design and lead design targeting protein–protein interaction interfaces and target-based classification of chemical space. In this chapter, we have briefly discussed the basic concepts and methods of generation of pharmacophore models. The diverse applications of the pharmacophore approaches have been discussed using number of case studies. We conclude with the limitations of the approaches and its wide scope for the future application depending on the research problem and the type of initial data available.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Myers S, Baker A (2001) Drug discovery—an operating model for a new era. Nat Biotechnol 19:727–730PubMedCrossRef Myers S, Baker A (2001) Drug discovery—an operating model for a new era. Nat Biotechnol 19:727–730PubMedCrossRef
2.
go back to reference Moses H III, Dorsey ER, Matheson DH et al (2005) Financial anatomy of biomedical research. JAMA 294:1333–1342PubMedCrossRef Moses H III, Dorsey ER, Matheson DH et al (2005) Financial anatomy of biomedical research. JAMA 294:1333–1342PubMedCrossRef
4.
go back to reference Veselovsky AV, Zharkova MS, Poroikov VV et al (2014) Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy. SAR QSAR Environ Res 25:457–471PubMedCrossRef Veselovsky AV, Zharkova MS, Poroikov VV et al (2014) Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy. SAR QSAR Environ Res 25:457–471PubMedCrossRef
5.
go back to reference Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10:579–591PubMedCrossRef Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10:579–591PubMedCrossRef
6.
go back to reference Taft CA, Da Silva VB, Da Silva CH (2008) Current topics in computer-aided drug design. J Pharm Sci 97:1089–1098PubMedCrossRef Taft CA, Da Silva VB, Da Silva CH (2008) Current topics in computer-aided drug design. J Pharm Sci 97:1089–1098PubMedCrossRef
7.
8.
go back to reference Reddy AS, Amarnath HSD, Bapi RS et al (2008) Protein ligand intreraction database (PLID): datamining analysis of structure-function relationships. Comput Biol Chem 32:387–390PubMedCrossRef Reddy AS, Amarnath HSD, Bapi RS et al (2008) Protein ligand intreraction database (PLID): datamining analysis of structure-function relationships. Comput Biol Chem 32:387–390PubMedCrossRef
9.
go back to reference Reddy ChS, Vijayasarathy K, Srinivas E et al (2006) Homology modeling of membrane proteins: a critical assessment. Comput Biol Chem 30:120–126PubMedCrossRef Reddy ChS, Vijayasarathy K, Srinivas E et al (2006) Homology modeling of membrane proteins: a critical assessment. Comput Biol Chem 30:120–126PubMedCrossRef
10.
go back to reference Srivastava HK, Sastry GN (2012) A molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. J Chem Inf Model 52:3088–3098PubMedCrossRef Srivastava HK, Sastry GN (2012) A molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. J Chem Inf Model 52:3088–3098PubMedCrossRef
11.
go back to reference Choudhury C, Priyakumar UD, Sastry GN (2014) Molecular dynamics investigation of the active site dynamics of mycobacterial cyclopropane synthase during various stages of the cyclopropanation process. J Struct Biol 187:38–48PubMedCrossRef Choudhury C, Priyakumar UD, Sastry GN (2014) Molecular dynamics investigation of the active site dynamics of mycobacterial cyclopropane synthase during various stages of the cyclopropanation process. J Struct Biol 187:38–48PubMedCrossRef
12.
go back to reference Badrinarayan P, Sastry GN (2014) Specificity rendering ‘hot-spots’ for aurora kinase inhibitor design: the role of non-covalent interactions and conformational transitions. PLoS ONE 9:e113773PubMedPubMedCentralCrossRef Badrinarayan P, Sastry GN (2014) Specificity rendering ‘hot-spots’ for aurora kinase inhibitor design: the role of non-covalent interactions and conformational transitions. PLoS ONE 9:e113773PubMedPubMedCentralCrossRef
13.
go back to reference Srivastava HK, Choudhury C, Sastry GN (2012) The efficacy of conceptual DFT descriptors and docking scores on the QSAR models of HIV protease inhibitors. Med Chem 8:811–825PubMedCrossRef Srivastava HK, Choudhury C, Sastry GN (2012) The efficacy of conceptual DFT descriptors and docking scores on the QSAR models of HIV protease inhibitors. Med Chem 8:811–825PubMedCrossRef
14.
go back to reference Srivani P, Srinivas E, Raghu R et al (2007) Molecular modeling studies of pyridopurinone derivatives—potential phosphodiesterase 5 inhibitors. J Mol Graph Model 26:378–390PubMedCrossRef Srivani P, Srinivas E, Raghu R et al (2007) Molecular modeling studies of pyridopurinone derivatives—potential phosphodiesterase 5 inhibitors. J Mol Graph Model 26:378–390PubMedCrossRef
15.
go back to reference Janardhan S, RamVivek M, Sastry GN (2016) Modeling the permeability of drug-like molecules through the cell wall of mycobacterium tuberculosis: an analogue based approach. Mol Bio Sys 12:3377–3384 Janardhan S, RamVivek M, Sastry GN (2016) Modeling the permeability of drug-like molecules through the cell wall of mycobacterium tuberculosis: an analogue based approach. Mol Bio Sys 12:3377–3384
16.
go back to reference Bohari MH, Sastry GN (2012) FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols. J Mol Model 18:4263–4274PubMedCrossRef Bohari MH, Sastry GN (2012) FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols. J Mol Model 18:4263–4274PubMedCrossRef
17.
go back to reference Choudhury C, Priyakumar UD, Sastry GN (2015) Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase. J Chem Inf Model 55:848–860PubMedCrossRef Choudhury C, Priyakumar UD, Sastry GN (2015) Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase. J Chem Inf Model 55:848–860PubMedCrossRef
18.
go back to reference Choudhury C, Priyakumar UD, Sastry GN (2016) Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors. J Chem Sci 128:719–732CrossRef Choudhury C, Priyakumar UD, Sastry GN (2016) Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors. J Chem Sci 128:719–732CrossRef
19.
go back to reference Reddy AS, Pati SP, Kumar PP et al (2007) Virtual screening in drug discovery—a computational perspective. Curr Protein Pept Sci 8:329–351PubMedCrossRef Reddy AS, Pati SP, Kumar PP et al (2007) Virtual screening in drug discovery—a computational perspective. Curr Protein Pept Sci 8:329–351PubMedCrossRef
20.
go back to reference Choudhury C, Priyakumar UD, Sastry GN (2016) Structural and functional diversities of the hexadecahydro-1H-cyclopenta[a] phenanthrene framework, a ubiquitous scaffold in steroidal hormones. Mol Inform 35:145–157PubMedCrossRef Choudhury C, Priyakumar UD, Sastry GN (2016) Structural and functional diversities of the hexadecahydro-1H-cyclopenta[a] phenanthrene framework, a ubiquitous scaffold in steroidal hormones. Mol Inform 35:145–157PubMedCrossRef
21.
go back to reference Agrafiotis DK, Bandyopadhyay D, Wegner JK et al (2007) Recent advances in chemoinformatics. J Chem Inf Model 47:1279–1293PubMedCrossRef Agrafiotis DK, Bandyopadhyay D, Wegner JK et al (2007) Recent advances in chemoinformatics. J Chem Inf Model 47:1279–1293PubMedCrossRef
22.
go back to reference Vogt M, Bajorath J (2012) Chemoinformatics: a view of the field and current trends in method development. Bioorg Med Chem 20:5317–5323PubMedCrossRef Vogt M, Bajorath J (2012) Chemoinformatics: a view of the field and current trends in method development. Bioorg Med Chem 20:5317–5323PubMedCrossRef
23.
go back to reference Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Inter 171:165–176CrossRef Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Inter 171:165–176CrossRef
24.
go back to reference Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044PubMedCrossRef Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044PubMedCrossRef
25.
go back to reference Gozalbes R, Doucet JP, Derouin F (2002) Application of topological descriptors in QSAR and drug design: history and new trends. Curr Drug Targets Infect Disord 2:93–102PubMedCrossRef Gozalbes R, Doucet JP, Derouin F (2002) Application of topological descriptors in QSAR and drug design: history and new trends. Curr Drug Targets Infect Disord 2:93–102PubMedCrossRef
26.
go back to reference Perkins R, Fang H, Tong W et al (2003) Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 22:1666–1679PubMedCrossRef Perkins R, Fang H, Tong W et al (2003) Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 22:1666–1679PubMedCrossRef
27.
go back to reference Kitchen DB, Decornez H, Furr JR (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949PubMedCrossRef Kitchen DB, Decornez H, Furr JR (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949PubMedCrossRef
28.
go back to reference Paul N, Kellenberger E, Bret G et al (2004) Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins 54:671–680PubMedCrossRef Paul N, Kellenberger E, Bret G et al (2004) Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins 54:671–680PubMedCrossRef
29.
go back to reference Kharkar PS, Warrier S, Gaud RS (2014) Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med Chem 6:333–342PubMedCrossRef Kharkar PS, Warrier S, Gaud RS (2014) Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med Chem 6:333–342PubMedCrossRef
30.
go back to reference Ravindra GK, Srivani P, Achaiah G et al (2007) Strategies to design pyrazolyl urea derivatives for p38 kinase inhibition: a molecular modeling study. J Comput Aided Mol Des 25:155–166 Ravindra GK, Srivani P, Achaiah G et al (2007) Strategies to design pyrazolyl urea derivatives for p38 kinase inhibition: a molecular modeling study. J Comput Aided Mol Des 25:155–166
31.
go back to reference Srivastava HK, Bohari M, Sastry GN (2012) Modeling anti-HIV compounds: the role of analogue based approaches. Curr Comput Aided Drug Des 8:224–248PubMedCrossRef Srivastava HK, Bohari M, Sastry GN (2012) Modeling anti-HIV compounds: the role of analogue based approaches. Curr Comput Aided Drug Des 8:224–248PubMedCrossRef
32.
go back to reference Gaur AS, Bhardwaj A, Sharma A et al (2017) Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis (MPDSTB). J Chem Sci 129:515CrossRef Gaur AS, Bhardwaj A, Sharma A et al (2017) Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis (MPDSTB). J Chem Sci 129:515CrossRef
33.
go back to reference Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450PubMedCrossRef Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450PubMedCrossRef
34.
go back to reference Braga RC, Andrade CH (2013) Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? Curr Topics Med Chem 13:1127–1138CrossRef Braga RC, Andrade CH (2013) Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? Curr Topics Med Chem 13:1127–1138CrossRef
35.
go back to reference Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169PubMedCrossRef Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169PubMedCrossRef
36.
go back to reference Koutsoukas A, Simms B, Kirchmair J et al (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteomics 74:2554–2574PubMedCrossRef Koutsoukas A, Simms B, Kirchmair J et al (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteomics 74:2554–2574PubMedCrossRef
37.
go back to reference Ehrlich P (1909) Ueber den jetzigen Stand der Chemotherapie. Ber Dtsch Chem Ges 42:17–47CrossRef Ehrlich P (1909) Ueber den jetzigen Stand der Chemotherapie. Ber Dtsch Chem Ges 42:17–47CrossRef
38.
go back to reference Ehrlich P, Morgenroth J. Über Haemolysine (1900) Dritte Mitteilung. Berl Klin Wochnschr 37:453–457 Ehrlich P, Morgenroth J. Über Haemolysine (1900) Dritte Mitteilung. Berl Klin Wochnschr 37:453–457
39.
go back to reference Wermuth CG, Ganellin CR, Lindberg P et al (1998) Glossary of terms used in medicinal chemistry (IUPAC recommendations 1997). Annu Rep Med Chem 33:385–395 Wermuth CG, Ganellin CR, Lindberg P et al (1998) Glossary of terms used in medicinal chemistry (IUPAC recommendations 1997). Annu Rep Med Chem 33:385–395
40.
go back to reference Güner OF (ed) (2000) Pharmacophore perception, development, and use in drug design, vol 2. Internat’l University Line Güner OF (ed) (2000) Pharmacophore perception, development, and use in drug design, vol 2. Internat’l University Line
41.
go back to reference Bush B, Sheridan RJ (1993) PATTY: a programmable atom type and language for automatic classification of atoms in molecular databases. Chem Inf Comput Sci 33:756–762CrossRef Bush B, Sheridan RJ (1993) PATTY: a programmable atom type and language for automatic classification of atoms in molecular databases. Chem Inf Comput Sci 33:756–762CrossRef
42.
go back to reference Greene J, Kahn S, Savoj H et al (1994) Chemical function queries for 3D database search. J Chem Inf Comput Sci 34:1297–1308CrossRef Greene J, Kahn S, Savoj H et al (1994) Chemical function queries for 3D database search. J Chem Inf Comput Sci 34:1297–1308CrossRef
44.
go back to reference Wang T, Zhou JJ (1998) 3DFS: a new 3D flexible searching system for use in drug design. Chem Inf Comput Sci 38:71–77CrossRef Wang T, Zhou JJ (1998) 3DFS: a new 3D flexible searching system for use in drug design. Chem Inf Comput Sci 38:71–77CrossRef
45.
go back to reference Pickett S, Mason J, McLay IJ (1996) Diversity profiling and design using 3D pharmacophores: pharmacophore-derived queries (PDQ). Chem Inf Comput Sci 36:1214–1223CrossRef Pickett S, Mason J, McLay IJ (1996) Diversity profiling and design using 3D pharmacophores: pharmacophore-derived queries (PDQ). Chem Inf Comput Sci 36:1214–1223CrossRef
46.
go back to reference Dixon SL, Smondyrev AM, Knoll EH et al (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671PubMedCrossRef Dixon SL, Smondyrev AM, Knoll EH et al (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671PubMedCrossRef
47.
48.
go back to reference Beckett AH (1959) Stereochemical factors in biological activity. In: Fortschritte der Arzneimittel Forschung. Birkhäuser Verlag, Basel, pp 455–530CrossRef Beckett AH (1959) Stereochemical factors in biological activity. In: Fortschritte der Arzneimittel Forschung. Birkhäuser Verlag, Basel, pp 455–530CrossRef
49.
go back to reference Kier LB (1967) Molecular orbital calculation of preferred conformations of acetylcholine, muscarine, and muscarone. Mol Pharmacol 3:487–494PubMed Kier LB (1967) Molecular orbital calculation of preferred conformations of acetylcholine, muscarine, and muscarone. Mol Pharmacol 3:487–494PubMed
50.
go back to reference Kier LB (1970) Receptor mapping using mo theory. In: Danielli JF, Moran JF, Triggle DJ (eds) Fundamental concepts in drug-receptor interactions, Academic Press: New York Kier LB (1970) Receptor mapping using mo theory. In: Danielli JF, Moran JF, Triggle DJ (eds) Fundamental concepts in drug-receptor interactions, Academic Press: New York
51.
go back to reference Kier LB (ed) (1971) MO theory in drug research. Academic Press, New York, pp 164–169 Kier LB (ed) (1971) MO theory in drug research. Academic Press, New York, pp 164–169
52.
go back to reference Evans BE, Rittle KE, Bock MG et al (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246PubMedCrossRef Evans BE, Rittle KE, Bock MG et al (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246PubMedCrossRef
53.
go back to reference Thompson LA, Ellman JA (1966) Synthesis and applications of small molecule libraries. Chem Rev 96:555–600CrossRef Thompson LA, Ellman JA (1966) Synthesis and applications of small molecule libraries. Chem Rev 96:555–600CrossRef
54.
go back to reference Wermuth CG (1998) Search for new lead compounds: the example of the chemical and pharmacological dissection of aminopyridazines. J Heterocycl Chem 35:1091–1100CrossRef Wermuth CG (1998) Search for new lead compounds: the example of the chemical and pharmacological dissection of aminopyridazines. J Heterocycl Chem 35:1091–1100CrossRef
55.
go back to reference Woods DD, Fildes P (1940) The anti-sulphanilamide activity (in vitro) ofp-aminobenzoic acid and related compounds. Chem Ind 59:133–134 Woods DD, Fildes P (1940) The anti-sulphanilamide activity (in vitro) ofp-aminobenzoic acid and related compounds. Chem Ind 59:133–134
56.
go back to reference Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem J 27:1257–1266PubMedPubMedCentralCrossRef Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem J 27:1257–1266PubMedPubMedCentralCrossRef
57.
go back to reference Peroutka SJ, U’Prichard DC, Greenberg DA et al (1977) Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacology 16:549–556PubMedCrossRef Peroutka SJ, U’Prichard DC, Greenberg DA et al (1977) Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacology 16:549–556PubMedCrossRef
58.
go back to reference Pullmann B, Coubeils JL, Courrière P et al (1972) Quantum mechanical study of the conformational properties of phenethylamines of biochemical and medicinal interest. J Med Chem 15:17–23CrossRef Pullmann B, Coubeils JL, Courrière P et al (1972) Quantum mechanical study of the conformational properties of phenethylamines of biochemical and medicinal interest. J Med Chem 15:17–23CrossRef
59.
go back to reference Leach AR, Gillet VJ, Lewis RA (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53:539–558PubMedCrossRef Leach AR, Gillet VJ, Lewis RA (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53:539–558PubMedCrossRef
60.
go back to reference Güner OF (2002) History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem 2:1321–1332PubMedCrossRef Güner OF (2002) History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem 2:1321–1332PubMedCrossRef
61.
go back to reference Maynard AJ (2004) HypoGenRefine and HipHopRefine: pharmacophore refinement using steric information from inactive compounds. Presented at the ACS national meeting, Spring, 2004 Maynard AJ (2004) HypoGenRefine and HipHopRefine: pharmacophore refinement using steric information from inactive compounds. Presented at the ACS national meeting, Spring, 2004
62.
go back to reference Jones G, Willett P, Glen R (2000) GASP: genetic algorithm superposition program. In: Pharmacophore perception, development, and use in drug design, vol 2. International University Line, La Jolla, CA, USA, pp 85–106 Jones G, Willett P, Glen R (2000) GASP: genetic algorithm superposition program. In: Pharmacophore perception, development, and use in drug design, vol 2. International University Line, La Jolla, CA, USA, pp 85–106
63.
go back to reference Jones G, Willett P, Glen RC (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 9:532–549PubMedCrossRef Jones G, Willett P, Glen RC (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 9:532–549PubMedCrossRef
66.
go back to reference Vlachakis D, Fakourelis P, Makris C, Kossida S (2015) DrugOn: a fully integrated pharmacophore modeling and structure optimization toolkit. PeerJ 3:e725PubMedPubMedCentralCrossRef Vlachakis D, Fakourelis P, Makris C, Kossida S (2015) DrugOn: a fully integrated pharmacophore modeling and structure optimization toolkit. PeerJ 3:e725PubMedPubMedCentralCrossRef
67.
go back to reference Khedkar SA, Malde AK, Coutinho EC et al (2007) Pharmacophore modeling in drug discovery and development: an overview. Med Chem 3:187–197PubMedCrossRef Khedkar SA, Malde AK, Coutinho EC et al (2007) Pharmacophore modeling in drug discovery and development: an overview. Med Chem 3:187–197PubMedCrossRef
68.
go back to reference Langer T, Hoffmann RD (eds) (2006) Pharmacophores and pharmacophore searches, pharmacophores and pharmacophore searches. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Langer T, Hoffmann RD (eds) (2006) Pharmacophores and pharmacophore searches, pharmacophores and pharmacophore searches. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
69.
go back to reference Finn PW, Kavraki LE, Latombe JC et al (1997) Rapid: randomized pharmacophore identification for drug design. Comput Geom Theor Appl 10:263–272CrossRef Finn PW, Kavraki LE, Latombe JC et al (1997) Rapid: randomized pharmacophore identification for drug design. Comput Geom Theor Appl 10:263–272CrossRef
70.
go back to reference Crandell C, Smith D (1983) Computer-assisted examination of compounds for common three-dimensional substructures. J Chem Inf Comp Sci 23:186–197CrossRef Crandell C, Smith D (1983) Computer-assisted examination of compounds for common three-dimensional substructures. J Chem Inf Comp Sci 23:186–197CrossRef
71.
go back to reference Martin YC (2000) DISCO: what we did right and what we missed. In: Pharmacophore perception, development, and use in drug design. International University Line, pp 49–68 Martin YC (2000) DISCO: what we did right and what we missed. In: Pharmacophore perception, development, and use in drug design. International University Line, pp 49–68
72.
go back to reference Dolata D, Parrill A, Walters W (1998) CLEW: the generation of pharmacophore hypotheses through machine learning. SAR QSAR Environ Res 9:53–81CrossRef Dolata D, Parrill A, Walters W (1998) CLEW: the generation of pharmacophore hypotheses through machine learning. SAR QSAR Environ Res 9:53–81CrossRef
73.
go back to reference Chen X, Rusinko A III, Tropsha A et al (1999) Automated pharmacophore Identification for large chemical data sets. J Chem Inf Comput Sci 39:887–896PubMedCrossRef Chen X, Rusinko A III, Tropsha A et al (1999) Automated pharmacophore Identification for large chemical data sets. J Chem Inf Comput Sci 39:887–896PubMedCrossRef
74.
go back to reference Handschuh S, Wagener M, Gasteiger JJ (1998) Superposition of three-dimensional chemical structures allowing for conformational flexibility by a hybrid method. J Chem Inf Comput Sci 38:220–232PubMedCrossRef Handschuh S, Wagener M, Gasteiger JJ (1998) Superposition of three-dimensional chemical structures allowing for conformational flexibility by a hybrid method. J Chem Inf Comput Sci 38:220–232PubMedCrossRef
75.
go back to reference Holliday J, Willet P (1997) Using a genetic algorithm to identify common structural features in sets of ligands. J Mol Graph Model 15:203–253CrossRef Holliday J, Willet P (1997) Using a genetic algorithm to identify common structural features in sets of ligands. J Mol Graph Model 15:203–253CrossRef
76.
go back to reference Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16:575–577CrossRef Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16:575–577CrossRef
77.
go back to reference Brint A, Willett P (1987) Algorithms for the identification of three-dimensional maximal common substructures. J Chem Inf Comp Sci 27:152–158CrossRef Brint A, Willett P (1987) Algorithms for the identification of three-dimensional maximal common substructures. J Chem Inf Comp Sci 27:152–158CrossRef
78.
go back to reference Guilloux VL, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinform 10:168–178CrossRef Guilloux VL, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinform 10:168–178CrossRef
79.
go back to reference Schmidtke P, Bidon-Chanal A, Luque FJ et al (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27:3276–3285PubMedCrossRef Schmidtke P, Bidon-Chanal A, Luque FJ et al (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27:3276–3285PubMedCrossRef
80.
go back to reference Carlson HA, Masukawa KM, Rubins K et al (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–2114PubMedCrossRef Carlson HA, Masukawa KM, Rubins K et al (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–2114PubMedCrossRef
81.
go back to reference Masukawa KM, Carlson HA, McCammon JA (2000) Technique for developing a pharmacophore model that accommodates inherent protein flexibility: an application to HIV-1 integrase. In: Guner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line Masukawa KM, Carlson HA, McCammon JA (2000) Technique for developing a pharmacophore model that accommodates inherent protein flexibility: an application to HIV-1 integrase. In: Guner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line
82.
go back to reference Clark DE, Westhead DR, Sykes RA et al (1996) Active-site-directed 3D database searching: pharmacophore extraction and validation of hits. J Comput Aided Mol Des 10:397–416PubMedCrossRef Clark DE, Westhead DR, Sykes RA et al (1996) Active-site-directed 3D database searching: pharmacophore extraction and validation of hits. J Comput Aided Mol Des 10:397–416PubMedCrossRef
83.
go back to reference Mahadevi AS, Sastry GN (2013) Cation-p interaction: its role and relevance in chemistry, biology and material science. Chem Rev 113:2100–2138PubMedCrossRef Mahadevi AS, Sastry GN (2013) Cation-p interaction: its role and relevance in chemistry, biology and material science. Chem Rev 113:2100–2138PubMedCrossRef
84.
go back to reference Chourasia M, Sastry GM, Sastry GN (2011) Aromatic—aromatic database, A2ID: an analysis of aromatic networks in proteins. Int J Biol Macromol 48:540–552PubMedCrossRef Chourasia M, Sastry GM, Sastry GN (2011) Aromatic—aromatic database, A2ID: an analysis of aromatic networks in proteins. Int J Biol Macromol 48:540–552PubMedCrossRef
85.
go back to reference Saha S, Sastry GN (2015) Cooperative or anticooperative: how noncovalent interactions influence each other. J Phys Chem B 119:11121–11135PubMedCrossRef Saha S, Sastry GN (2015) Cooperative or anticooperative: how noncovalent interactions influence each other. J Phys Chem B 119:11121–11135PubMedCrossRef
86.
go back to reference Badrinarayan P, Choudhury C, Sastry GN (2015) Molecular modeling. In: Dhar PK and Singh V (eds) Systems and synthetic biology (S2B2). Springer Press, pp 93–128 Badrinarayan P, Choudhury C, Sastry GN (2015) Molecular modeling. In: Dhar PK and Singh V (eds) Systems and synthetic biology (S2B2). Springer Press, pp 93–128
87.
go back to reference Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169PubMedCrossRef Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169PubMedCrossRef
88.
go back to reference Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49:2356–2368PubMedCrossRef Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49:2356–2368PubMedCrossRef
89.
go back to reference Friesner R, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196PubMedCrossRef Friesner R, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196PubMedCrossRef
90.
go back to reference Carlson HA, Masukawa KM, McCammon JA (1999) Method for including the dynamic fluctuations of a protein in computer-aided drug design. J Phys Chem A 103:10213–10219CrossRef Carlson HA, Masukawa KM, McCammon JA (1999) Method for including the dynamic fluctuations of a protein in computer-aided drug design. J Phys Chem A 103:10213–10219CrossRef
91.
go back to reference McGregor MJ, Muskal SM (1999) Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J Chem Inf Comput Sci 39:569–574PubMedCrossRef McGregor MJ, Muskal SM (1999) Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J Chem Inf Comput Sci 39:569–574PubMedCrossRef
92.
go back to reference McGregor MJ, Muskal SM (2000) Pharmacophore fingerprinting. 2. Application to primary library design. J Chem Inf Comput Sci 40:117–125PubMedCrossRef McGregor MJ, Muskal SM (2000) Pharmacophore fingerprinting. 2. Application to primary library design. J Chem Inf Comput Sci 40:117–125PubMedCrossRef
93.
go back to reference Voet AR, Kumar A, Berenger F et al (2014) Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4. J Comput Aided Mol Des 28:363–373PubMedCrossRef Voet AR, Kumar A, Berenger F et al (2014) Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4. J Comput Aided Mol Des 28:363–373PubMedCrossRef
94.
go back to reference Voet A, Helsen C, Zhang KY et al (2013) The discovery of novel human androgen receptor antagonist chemotypes using a combined pharmacophore screening procedure. Chem Med Chem 8:644–651PubMedCrossRef Voet A, Helsen C, Zhang KY et al (2013) The discovery of novel human androgen receptor antagonist chemotypes using a combined pharmacophore screening procedure. Chem Med Chem 8:644–651PubMedCrossRef
95.
go back to reference Loving K, Salam NK, Sherman W (2009) Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J Comput Aided Mol Des 23:541–554PubMedCrossRef Loving K, Salam NK, Sherman W (2009) Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J Comput Aided Mol Des 23:541–554PubMedCrossRef
96.
go back to reference Anuradha A, Trivelli X, Guérardel Y et al (2007) Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria. PLoS ONE 12:e1343 Anuradha A, Trivelli X, Guérardel Y et al (2007) Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria. PLoS ONE 12:e1343
97.
98.
go back to reference Yamashita F, Hashida M (2004) In silico approaches for predicting ADME properties of drugs. Drug Metab Pharmacokinet 19:327–338PubMedCrossRef Yamashita F, Hashida M (2004) In silico approaches for predicting ADME properties of drugs. Drug Metab Pharmacokinet 19:327–338PubMedCrossRef
99.
go back to reference de Groot MJ, Ekins S (2002) Pharmacophore modeling of cytochromes P450. Adv Drug Deliv Rev 54:367–383PubMedCrossRef de Groot MJ, Ekins S (2002) Pharmacophore modeling of cytochromes P450. Adv Drug Deliv Rev 54:367–383PubMedCrossRef
100.
go back to reference Ekins S, de Groot MJ, Jones JP (2001) Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites. Drug Metab Dispos 29:936–944PubMed Ekins S, de Groot MJ, Jones JP (2001) Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites. Drug Metab Dispos 29:936–944PubMed
101.
go back to reference Sorich MJ, Miners JO, McKinnon RA et al (2004) Multiple pharmacophores for the investigation of human UDP-glucuronosyltransferase isoform substrate selectivity. Mol Pharmacol 65:301–308PubMedCrossRef Sorich MJ, Miners JO, McKinnon RA et al (2004) Multiple pharmacophores for the investigation of human UDP-glucuronosyltransferase isoform substrate selectivity. Mol Pharmacol 65:301–308PubMedCrossRef
102.
go back to reference Hu Y, Bajorath J (2010) Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs. J Chem Inf Model 50:2112–2118PubMedCrossRef Hu Y, Bajorath J (2010) Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs. J Chem Inf Model 50:2112–2118PubMedCrossRef
103.
go back to reference Keiser MJ, Roth BL, Armbruster BN (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206PubMedCrossRef Keiser MJ, Roth BL, Armbruster BN (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206PubMedCrossRef
104.
go back to reference Koutsoukas A, Simms B, Kirchmair J et al (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteomics 74:2554–2574PubMedCrossRef Koutsoukas A, Simms B, Kirchmair J et al (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteomics 74:2554–2574PubMedCrossRef
105.
go back to reference Xu Y, Liu X, Li S (2013) Combinatorial pharmacophore modeling of organic cation transporter 2 (OCT2) inhibitors: insights into multiple inhibitory mechanisms. 10:4611–4619 Xu Y, Liu X, Li S (2013) Combinatorial pharmacophore modeling of organic cation transporter 2 (OCT2) inhibitors: insights into multiple inhibitory mechanisms. 10:4611–4619
106.
go back to reference Rollinger JM, Schuster D, Danzl B et al (2009) In silico target fishing for rationalized ligand discovery exemplified on constituents of ruta graveolens. Planta Med 75:195–204PubMedCrossRef Rollinger JM, Schuster D, Danzl B et al (2009) In silico target fishing for rationalized ligand discovery exemplified on constituents of ruta graveolens. Planta Med 75:195–204PubMedCrossRef
107.
go back to reference Tschinke V, Cohen NJ (1993) The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypotheses. Med Chem 36:3863–3870CrossRef Tschinke V, Cohen NJ (1993) The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypotheses. Med Chem 36:3863–3870CrossRef
108.
go back to reference Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78PubMedCrossRef Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78PubMedCrossRef
109.
go back to reference Roe D, Kuntz IJ (1995) BUILDER v.2: improving the chemistry of a de novo design strategy. J Comput Aided Mol Des 9:269–282PubMedCrossRef Roe D, Kuntz IJ (1995) BUILDER v.2: improving the chemistry of a de novo design strategy. J Comput Aided Mol Des 9:269–282PubMedCrossRef
110.
go back to reference Joseph-McCarthy D (1999) Computational approaches to structure-based ligand design. Pharmacol Ther 84:179–191PubMedCrossRef Joseph-McCarthy D (1999) Computational approaches to structure-based ligand design. Pharmacol Ther 84:179–191PubMedCrossRef
111.
go back to reference Schneider G, Bohm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7:64–70PubMedCrossRef Schneider G, Bohm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7:64–70PubMedCrossRef
112.
go back to reference Scior T, Bender A, Tresadern G et al (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881PubMedCrossRef Scior T, Bender A, Tresadern G et al (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881PubMedCrossRef
113.
go back to reference Vancraenenbroeck R, De Raeymaecker J, Lobbestael E et al (2014) In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2. Front Mol Neurosci 7:51PubMedPubMedCentralCrossRef Vancraenenbroeck R, De Raeymaecker J, Lobbestael E et al (2014) In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2. Front Mol Neurosci 7:51PubMedPubMedCentralCrossRef
114.
go back to reference Schomburg KT, Bietz S, Briem H et al (2014) Facing the challenges of structure-based target prediction by inverse virtual screening. J Chem Inf Model 54:1676–1686PubMedCrossRef Schomburg KT, Bietz S, Briem H et al (2014) Facing the challenges of structure-based target prediction by inverse virtual screening. J Chem Inf Model 54:1676–1686PubMedCrossRef
115.
go back to reference Kirchmair J, Wolber G, Laggner C et al (2006) Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model 46:1848–1861PubMedCrossRef Kirchmair J, Wolber G, Laggner C et al (2006) Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model 46:1848–1861PubMedCrossRef
116.
go back to reference Kirchmair J, Laggner C, Wolber G et al (2005) Comparative analysis of protein-bound ligand conformations with respect to catalyst’s conformational space subsampling algorithms. J Chem Inf Model 45:422–430PubMedCrossRef Kirchmair J, Laggner C, Wolber G et al (2005) Comparative analysis of protein-bound ligand conformations with respect to catalyst’s conformational space subsampling algorithms. J Chem Inf Model 45:422–430PubMedCrossRef
Metadata
Title
Pharmacophore Modelling and Screening: Concepts, Recent Developments and Applications in Rational Drug Design
Authors
Chinmayee Choudhury
G. Narahari Sastry
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05282-9_2

Premium Partner