Skip to main content
Top
Published in: Physics of Metals and Metallography 5/2021

01-05-2021 | THEORY OF METALS

Phase Diagram of the Antiferromagnetic Potts Model with Number q = 4 of Spin States in the Hexagonal Lattice

Authors: A. K. Murtazaev, M. K. Mazagaeva, M. K. Ramazanov, M. A. Magomedov

Published in: Physics of Metals and Metallography | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Wang–Landau algorithm of the Monte Carlo method is used to study the magnetic structures of the ground state, phase transitions, and thermodynamic properties of the two-dimensional antiferromagnetic Potts model with number q = 4 of spin states in a hexagonal lattice with the interactions of the nearest (J1) and next-to-nearest (J2) neighbors. The exchange interaction ratios in the range of 0.0 ≤ r = |J2/J1| ≤ 1.0 are studied. A phase diagram of the dependence of the critical temperature on the exchange interaction value of the next-to-nearest neighbors is constructed. The nature of phase transitions is analyzed. It is found that a first-order phase transition is observed in the range of 0.1 ≤ r ≤ 1.0, while there is no phase transition in the system and a strong degeneracy of the ground state is observed at r = 0.0.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004), p. 624. H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004), p. 624.
2.
go back to reference R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982). R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982).
3.
go back to reference F. Y. Wu, Exactly Solved Models. A Journey in Statistical Mechanics (World Scientific, New Jersey, 2008). F. Y. Wu, Exactly Solved Models. A Journey in Statistical Mechanics (World Scientific, New Jersey, 2008).
4.
5.
go back to reference W. Zhang and Y. Deng, “Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions,” Phys. Rev. E. 78, 031103 (2008).CrossRef W. Zhang and Y. Deng, “Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions,” Phys. Rev. E. 78, 031103 (2008).CrossRef
6.
go back to reference A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice,” Mater. Lett. 236, 669–671 (2019).CrossRef A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice,” Mater. Lett. 236, 669–671 (2019).CrossRef
7.
go back to reference M. K. Ramazanov and A. K. Murtazaev, “Phase diagram of the antiferromagnetic Heisenberg model on a cubic lattice,” JETP Lett. 109, 589–593 (2019).CrossRef M. K. Ramazanov and A. K. Murtazaev, “Phase diagram of the antiferromagnetic Heisenberg model on a cubic lattice,” JETP Lett. 109, 589–593 (2019).CrossRef
8.
go back to reference A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Phase transitions in the Ising model on a triangular lattice with different values of interlayer exchange interaction,” Low Temp. Phys. 45, 1263–1266 (2019).CrossRef A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Phase transitions in the Ising model on a triangular lattice with different values of interlayer exchange interaction,” Low Temp. Phys. 45, 1263–1266 (2019).CrossRef
9.
go back to reference M. K. Badiev, A. K. Murtazaev, M. K. Ramazanov, and M. A. Magomedov, “The critical properties of the Ising model in a magnetic field,” Low Temp. Phys. 46, 693–696 (2020). M. K. Badiev, A. K. Murtazaev, M. K. Ramazanov, and M. A. Magomedov, “The critical properties of the Ising model in a magnetic field,” Low Temp. Phys. 46, 693–696 (2020).
10.
go back to reference A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and critical properties of the heisenberg antiferromagnetic model on a body-centered cubic lattice with second nearest neighbor interaction,” J. Exp. Theor. Phys. 156, 903–910 (2019).CrossRef A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and critical properties of the heisenberg antiferromagnetic model on a body-centered cubic lattice with second nearest neighbor interaction,” J. Exp. Theor. Phys. 156, 903–910 (2019).CrossRef
11.
go back to reference M. Nauenberg and D. J. Scalapino, “Singularities and scaling functions at the Potts-model multicritical point,” Phys. Rev. Lett. 44, 837–840 (1980). M. Nauenberg and D. J. Scalapino, “Singularities and scaling functions at the Potts-model multicritical point,” Phys. Rev. Lett. 44, 837–840 (1980).
12.
go back to reference J. L. Cardy, M. Nauenberg, and D. J. Scalapino, “Scaling theory of the Potts-model multicritical point,” Phys. Rev. B 22, 2560–2568 (1980).CrossRef J. L. Cardy, M. Nauenberg, and D. J. Scalapino, “Scaling theory of the Potts-model multicritical point,” Phys. Rev. B 22, 2560–2568 (1980).CrossRef
13.
go back to reference M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Phase diagrams and ground-state structures of the Potts model on a triangular lattice,” Phys. A 521, 543–550 (2019).CrossRef M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Phase diagrams and ground-state structures of the Potts model on a triangular lattice,” Phys. A 521, 543–550 (2019).CrossRef
14.
go back to reference H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, “Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros,” J. Phys. A 31, 2287–2310 (1998).CrossRef H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, “Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros,” J. Phys. A 31, 2287–2310 (1998).CrossRef
15.
go back to reference F. A. Kassan-Ogly and A. I. Proshkin, “Frustrations and ordering in magnetic systems of various dimensions,” Phys. Solid State. 60, 1090–1097 (2018).CrossRef F. A. Kassan-Ogly and A. I. Proshkin, “Frustrations and ordering in magnetic systems of various dimensions,” Phys. Solid State. 60, 1090–1097 (2018).CrossRef
16.
go back to reference A. K. Murtazaev, M. K. Ramazanov, M. K. Mazagaeva, and M. A. Magomedov, “Phase transitions and thermodynamic properties of the Potts model with spin states number q = 4 on a hexagonal lattice,” J. Exp. Theor. Phys. 156, 421–425 (2019).CrossRef A. K. Murtazaev, M. K. Ramazanov, M. K. Mazagaeva, and M. A. Magomedov, “Phase transitions and thermodynamic properties of the Potts model with spin states number q = 4 on a hexagonal lattice,” J. Exp. Theor. Phys. 156, 421–425 (2019).CrossRef
17.
go back to reference A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and the thermodynamic properties of the potts model with the number of spin states q = 4 on a triangular lattice,” Phys. Solid State 61, 2172–2176 (2019). A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase transitions and the thermodynamic properties of the potts model with the number of spin states q = 4 on a triangular lattice,” Phys. Solid State 61, 2172–2176 (2019).
18.
go back to reference M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Mazagaeva, “Phase transformations and thermodynamic properties of the Potts model with q = 4 on a hexagonal lattice with interactions of next-nearest neighbors,” Phys. Solid State 62, 499–503 (2020).CrossRef M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Mazagaeva, “Phase transformations and thermodynamic properties of the Potts model with q = 4 on a hexagonal lattice with interactions of next-nearest neighbors,” Phys. Solid State 62, 499–503 (2020).CrossRef
19.
go back to reference M. G. Townsend, G. Longworth, and E. Roudaut, “Triangular-spin, kagome plane in jarosites,” Phys. Rev. B 33, 4919–4926 (1986).CrossRef M. G. Townsend, G. Longworth, and E. Roudaut, “Triangular-spin, kagome plane in jarosites,” Phys. Rev. B 33, 4919–4926 (1986).CrossRef
20.
go back to reference Y. Chiaki and O. Yutaka, “Three-dimensional antiferromagnetic q-state Potts models: application of the Wang–Landau algorithm,” J. Phys. A: Math. Theor. 34, 8781–8794 (2001).CrossRef Y. Chiaki and O. Yutaka, “Three-dimensional antiferromagnetic q-state Potts models: application of the Wang–Landau algorithm,” J. Phys. A: Math. Theor. 34, 8781–8794 (2001).CrossRef
21.
go back to reference R. Masrour and A. Jabar, “Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: a Monte Carlo simulation,” Phys. A 515, 270–278 (2019).CrossRef R. Masrour and A. Jabar, “Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: a Monte Carlo simulation,” Phys. A 515, 270–278 (2019).CrossRef
22.
go back to reference A. K. Murtazaev, M. K. Ramazanov, K. S. Murtazaev, and F. A. Kassan-Ogly, “Study of phase transitions in the antiferromagnetic Heisenberg model on a body-centered cubic lattice by monte carlo simulation, Phys. Met. Metallogr. 121, 305–309 (2020). A. K. Murtazaev, M. K. Ramazanov, K. S. Murtazaev, and F. A. Kassan-Ogly, “Study of phase transitions in the antiferromagnetic Heisenberg model on a body-centered cubic lattice by monte carlo simulation, Phys. Met. Metallogr. 121, 305–309 (2020).
23.
go back to reference A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase diagram of the antiferromagnetic Heisenberg model on a bcc lattice with competing first and second neighbor interactions,” Phys. A 545, 123548–1–123548–6 (2020).CrossRef A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, “Phase diagram of the antiferromagnetic Heisenberg model on a bcc lattice with competing first and second neighbor interactions,” Phys. A 545, 123548–1–123548–6 (2020).CrossRef
24.
go back to reference R. Masrour and A. Jabar, “Magnetic properties in stacked triangular lattice: Monte Carlo approach,” Phys. A 491, 926–934 (2018).CrossRef R. Masrour and A. Jabar, “Magnetic properties in stacked triangular lattice: Monte Carlo approach,” Phys. A 491, 926–934 (2018).CrossRef
25.
go back to reference F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101–1–056101–16 (2001). F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101–1–056101–16 (2001).
26.
go back to reference F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001).CrossRef F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001).CrossRef
27.
go back to reference F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Influence of field on frustrations in low-dimensional magnets,” J. Magn. Magn. Mater. 24, 3418–3421 (2012).CrossRef F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Influence of field on frustrations in low-dimensional magnets,” J. Magn. Magn. Mater. 24, 3418–3421 (2012).CrossRef
28.
go back to reference F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, “Ising model on a square lattice with second-neighbor and third- neighbor interactions,” J. Magn. Magn. Mater. 384, 247–254 (2015).CrossRef F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, “Ising model on a square lattice with second-neighbor and third- neighbor interactions,” J. Magn. Magn. Mater. 384, 247–254 (2015).CrossRef
29.
go back to reference A. I. Proshkin and F. A. Kassan-Ogly, “Frustration and Phase Transitions in Ising model on decorated square lattice,” Phys. Met. Metallogr. 120, 1366–1372 (2019).CrossRef A. I. Proshkin and F. A. Kassan-Ogly, “Frustration and Phase Transitions in Ising model on decorated square lattice,” Phys. Met. Metallogr. 120, 1366–1372 (2019).CrossRef
30.
go back to reference F. A. Kassan-Ogly and A. I. Proshkin, “Ising model on planar decorated lattices. Frustrations and their influence on phase transitions,” Phys. Met. Metallogr. 120, 1359–1365 (2019).CrossRef F. A. Kassan-Ogly and A. I. Proshkin, “Ising model on planar decorated lattices. Frustrations and their influence on phase transitions,” Phys. Met. Metallogr. 120, 1359–1365 (2019).CrossRef
31.
go back to reference D. R. Kurbanova, A. K. Murtazaev, M. K. Ramazanov, M. A. Magomedov, and T. A. Taaev, “Frustrated Potts Model with spin states number q = 4 on a triangular lattice,” J. Exp. Theor. Phys. 131, 951–955 (2020). D. R. Kurbanova, A. K. Murtazaev, M. K. Ramazanov, M. A. Magomedov, and T. A. Taaev, “Frustrated Potts Model with spin states number q = 4 on a triangular lattice,” J. Exp. Theor. Phys. 131, 951–955 (2020).
32.
go back to reference A. K. Murtazaev, T. R. Rizvanova, M. K. Ramazanov, and M. A. Magomedov, “Phase transitions and the thermodynamic properties of the Potts model with the spin state number q = 4 at a Kagome lattice,” Phys. Solid State 62, 1434–1438 (2020). A. K. Murtazaev, T. R. Rizvanova, M. K. Ramazanov, and M. A. Magomedov, “Phase transitions and the thermodynamic properties of the Potts model with the spin state number q = 4 at a Kagome lattice,” Phys. Solid State 62, 1434–1438 (2020).
Metadata
Title
Phase Diagram of the Antiferromagnetic Potts Model with Number q = 4 of Spin States in the Hexagonal Lattice
Authors
A. K. Murtazaev
M. K. Mazagaeva
M. K. Ramazanov
M. A. Magomedov
Publication date
01-05-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21050094

Other articles of this Issue 5/2021

Physics of Metals and Metallography 5/2021 Go to the issue