Skip to main content
Top

2011 | OriginalPaper | Chapter

21. Phase Field Approach

Author : Toshiyuki Koyama

Published in: Springer Handbook of Metrology and Testing

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The term phase field has recently become known across many fields of materials science. The meaning of phase field is the spatial and temporal order parameter field defined in a continuum-diffused interface model. By using the phase field order parameters, many types of complex microstructure changes observed in materials science are described effectively. This methodology has been referred to as the phase field method, phase field simulation, phase field modeling, phase field approach, etc. In this chapter, the basic concept and theoretical background for the phase field approach is explained in Sects. 21.1 and 21.2. The overview of recent applications of the phase field method is demonstrated in Sects. 21.3 to 21.6.
Phase field models have been successfully applied to various materials processes including solidification, solid-state phase transformations and microstructure changes. Using phase field methodology, one can deal with the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces. This approach can describe different processes such as diffusion-controlled phase separation and diffusionless phase transition within the same formulation. It is rather straightforward to incorporate the effect of coherency and applied stresses, as well as electrical and magnetic fields.
Since phase field methodology can model complex microstructure changes quantitatively, it will be possible to search for the most desirable microstructure using this method as a design simulation, i.e., through computer trial-and-error testing. Therefore, the most effective strategy for developing advanced materials is as follows. First, we elucidate the mechanism of microstructure changes experimentally, then we model the microstructure evolutions using the phase-field method based on the experimental results, and finally we search for the most desirable microstructure while simultaneously considering both the simulation and experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
21.1.
go back to reference R. Kobayashi: Modeling and numerical simulations of dendritic crystal growth, Physica D 63, 410–423 (1993)CrossRef R. Kobayashi: Modeling and numerical simulations of dendritic crystal growth, Physica D 63, 410–423 (1993)CrossRef
21.2.
go back to reference A.A. Wheeler, W.J. Boettinger, G.B. McFadden: Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45, 7424–7439 (1992)CrossRef A.A. Wheeler, W.J. Boettinger, G.B. McFadden: Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45, 7424–7439 (1992)CrossRef
21.3.
go back to reference W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma: Phase-field simulation of solidification, Annu. Rev. Mater. Res. A 32, 163–194 (2002)CrossRef W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma: Phase-field simulation of solidification, Annu. Rev. Mater. Res. A 32, 163–194 (2002)CrossRef
21.4.
go back to reference L.-Q. Chen: Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32, 113–140 (2002)CrossRef L.-Q. Chen: Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32, 113–140 (2002)CrossRef
21.5.
go back to reference M. Ode, S.G. Kim, T. Suzuki: Recent Advances in the phase-field model for solidification, Iron Steel Inst. Jpn. Int. 41, 1076–1082 (2001)CrossRef M. Ode, S.G. Kim, T. Suzuki: Recent Advances in the phase-field model for solidification, Iron Steel Inst. Jpn. Int. 41, 1076–1082 (2001)CrossRef
21.6.
go back to reference H. Emmerich: The Diffuse Interface Approach in Materials Science (Springer, Berlin, Heidelberg 2003) H. Emmerich: The Diffuse Interface Approach in Materials Science (Springer, Berlin, Heidelberg 2003)
21.7.
21.8.
go back to reference J.J. Robinson (Ed.): Solidification and microstructure, J. Min. Met. Mater. Soc. 56(4), 16–68 (2004) J.J. Robinson (Ed.): Solidification and microstructure, J. Min. Met. Mater. Soc. 56(4), 16–68 (2004)
21.9.
go back to reference J.A. Warren, W.J. Boettinger: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metall. Mater. 43, 689–703 (1995)CrossRef J.A. Warren, W.J. Boettinger: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metall. Mater. 43, 689–703 (1995)CrossRef
21.10.
go back to reference A. Karma, W.-J. Rappel: Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57, 4323–4349 (1998)CrossRef A. Karma, W.-J. Rappel: Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57, 4323–4349 (1998)CrossRef
21.11.
go back to reference S.G. Kim, W.T. Kim, T. Suzuki: Phase-field model for binary alloys, Phys Rev. E 60, 7186–7197 (1999)CrossRef S.G. Kim, W.T. Kim, T. Suzuki: Phase-field model for binary alloys, Phys Rev. E 60, 7186–7197 (1999)CrossRef
21.12.
go back to reference T. Suzuki, M. Ode, S.G. Kim: Phase-field model of dendritic growth, J. Cryst. Growth 237–239, 125–131 (2002)CrossRef T. Suzuki, M. Ode, S.G. Kim: Phase-field model of dendritic growth, J. Cryst. Growth 237–239, 125–131 (2002)CrossRef
21.13.
go back to reference T. Miyazaki, T. Koyama: Computer simulations of the phase transformation in real alloy systems based on the phase field method, Mater. Sci. Eng. A 312, 38–49 (2001)CrossRef T. Miyazaki, T. Koyama: Computer simulations of the phase transformation in real alloy systems based on the phase field method, Mater. Sci. Eng. A 312, 38–49 (2001)CrossRef
21.14.
go back to reference T. Koyama: Computer simulation of phase decomposition in two dimensions based on a discrete type non-linear diffusion equation, 39, 169–178 (1998) T. Koyama: Computer simulation of phase decomposition in two dimensions based on a discrete type non-linear diffusion equation, 39, 169–178 (1998)
21.15.
go back to reference J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, L.Q. Chen: Three-dimensional phase-field simulations of coarsening kinetics of γ′ particles in binary Ni-Al alloys, Acta Mater. 52, 2837–2845 (2004)CrossRef J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, L.Q. Chen: Three-dimensional phase-field simulations of coarsening kinetics of γ′ particles in binary Ni-Al alloys, Acta Mater. 52, 2837–2845 (2004)CrossRef
21.16.
go back to reference C.E. Krill III, L.-Q. Chen: Computer simulation of 3-D grain growth using a phase-field model, Acta Mater. 50, 3059–3075 (2002)CrossRef C.E. Krill III, L.-Q. Chen: Computer simulation of 3-D grain growth using a phase-field model, Acta Mater. 50, 3059–3075 (2002)CrossRef
21.17.
go back to reference A.E. Lobkovsky, J.A. Warren: Phase-field model of crystal grains, J. Cryst. Growth 225, 282–288 (2001)CrossRef A.E. Lobkovsky, J.A. Warren: Phase-field model of crystal grains, J. Cryst. Growth 225, 282–288 (2001)CrossRef
21.18.
go back to reference J.A. Warren, R. Kobayashi, W.C. Carter: Modeling grain boundaries using a phase-field technique, J. Cryst. Growth 211, 18–20 (2000)CrossRef J.A. Warren, R. Kobayashi, W.C. Carter: Modeling grain boundaries using a phase-field technique, J. Cryst. Growth 211, 18–20 (2000)CrossRef
21.19.
go back to reference T. Miyazaki: Recent developments and the future of computational science on microstructure formation, Mater. Trans. 43, 1266–1272 (2002)CrossRef T. Miyazaki: Recent developments and the future of computational science on microstructure formation, Mater. Trans. 43, 1266–1272 (2002)CrossRef
21.20.
go back to reference J. Wang, S.-Q. Shi, L.-Q. Chen, Y. Li, T.-Y. Zhang: Phase-field simulations of ferroelectric/ferroelastic polarization switching, Acta Mater. 52, 749–764 (2004)CrossRef J. Wang, S.-Q. Shi, L.-Q. Chen, Y. Li, T.-Y. Zhang: Phase-field simulations of ferroelectric/ferroelastic polarization switching, Acta Mater. 52, 749–764 (2004)CrossRef
21.21.
go back to reference Y.L. Li, S.Y. Hu, Z.K. Liu, L.-Q. Chen: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films, Acta Mater. 50, 395–411 (2002)CrossRef Y.L. Li, S.Y. Hu, Z.K. Liu, L.-Q. Chen: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films, Acta Mater. 50, 395–411 (2002)CrossRef
21.22.
go back to reference Y.M. Jin, A. Artemev, A.G. Khachaturyan: Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulation of ζ′2 martensite in AuCd alloys, Acta Mater. 49, 2309–2320 (2001)CrossRef Y.M. Jin, A. Artemev, A.G. Khachaturyan: Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulation of ζ2 martensite in AuCd alloys, Acta Mater. 49, 2309–2320 (2001)CrossRef
21.23.
go back to reference Y.U. Wang, Y.M. Jin, A.M. Cuitino, A.G. Khachaturyan: Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations, Acta Mater. 49, 1847–1857 (2001)CrossRef Y.U. Wang, Y.M. Jin, A.M. Cuitino, A.G. Khachaturyan: Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations, Acta Mater. 49, 1847–1857 (2001)CrossRef
21.24.
go back to reference D. Rodney, Y. Le Bouar, A. Finel: Phase field methods and dislocations, Acta Mater. 51, 17–30 (2003)CrossRef D. Rodney, Y. Le Bouar, A. Finel: Phase field methods and dislocations, Acta Mater. 51, 17–30 (2003)CrossRef
21.25.
go back to reference S.Y. Hu, L.-Q. Chen: A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater. 49, 1879–1890 (2001)CrossRef S.Y. Hu, L.-Q. Chen: A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater. 49, 1879–1890 (2001)CrossRef
21.26.
go back to reference Y.U. Wang, Y.M. Jin, A.G. Khachaturyan: Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress, J. Appl. Phys. 91, 6435–6451 (2002)CrossRef Y.U. Wang, Y.M. Jin, A.G. Khachaturyan: Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress, J. Appl. Phys. 91, 6435–6451 (2002)CrossRef
21.27.
go back to reference J.S. Rowlinson: Translation of J.D. van der Waalsʼ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”, J. Stat. Phys. 20, 197–244 (1979)CrossRef J.S. Rowlinson: Translation of J.D. van der Waalsʼ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”, J. Stat. Phys. 20, 197–244 (1979)CrossRef
21.28.
go back to reference W.C. Carter, W.C. Johnson (Eds.): The Selected Works of J.W. Cahn (Min. Met. Mater. Soc., Warrendale 1998) W.C. Carter, W.C. Johnson (Eds.): The Selected Works of J.W. Cahn (Min. Met. Mater. Soc., Warrendale 1998)
21.29.
go back to reference H.I. Aaronson (Ed.): Phase Transformation (ASM, Metals Park 1970) p. 497 H.I. Aaronson (Ed.): Phase Transformation (ASM, Metals Park 1970) p. 497
21.30.
go back to reference C. Kittel, H. Kroemer: Thermal Physics (Freeman, New York 1980) C. Kittel, H. Kroemer: Thermal Physics (Freeman, New York 1980)
21.31.
go back to reference D. Fan, L.-Q. Chen: Topological evolution during coupled grain growth and Ostwald ripening in volume-conserved 2-D two-phase polycrystals, Acta Mater. 45, 4145–4154 (1997)CrossRef D. Fan, L.-Q. Chen: Topological evolution during coupled grain growth and Ostwald ripening in volume-conserved 2-D two-phase polycrystals, Acta Mater. 45, 4145–4154 (1997)CrossRef
21.32.
go back to reference D. Fan, L.-Q. Chen: Possibility of spinodal decomposition in yttria-partially stabilized zirconia (ZrO_2-Y_2O_3) system – A theoretical investigation, J. Am. Ceram. Soc. 78, 1680–1686 (1995)CrossRef D. Fan, L.-Q. Chen: Possibility of spinodal decomposition in yttria-partially stabilized zirconia (ZrO_2-Y_2O_3) system – A theoretical investigation, J. Am. Ceram. Soc. 78, 1680–1686 (1995)CrossRef
21.33.
go back to reference N. Saunders, A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Pergamon, New York 1998) N. Saunders, A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Pergamon, New York 1998)
21.34.
go back to reference S.M. Allen, J.W. Cahn: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. Mater. 27, 1085–1095 (1979)CrossRef S.M. Allen, J.W. Cahn: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. Mater. 27, 1085–1095 (1979)CrossRef
21.35.
go back to reference J.J. Eggleston, G.B. McFadden, P.W. Voorhees: A phase-field model for highly anisotropic interfacial energy, Physica D 150, 91–103 (2001)CrossRef J.J. Eggleston, G.B. McFadden, P.W. Voorhees: A phase-field model for highly anisotropic interfacial energy, Physica D 150, 91–103 (2001)CrossRef
21.36.
go back to reference I. Steinbach, F. Pezzolla, B. Nestler, M. Seeselberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende: A phase field concept for multiphase systems, Physica D 94, 135–147 (1996)CrossRef I. Steinbach, F. Pezzolla, B. Nestler, M. Seeselberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende: A phase field concept for multiphase systems, Physica D 94, 135–147 (1996)CrossRef
21.37.
go back to reference A. Khachaturyan: Theory of Structural Transformations in Solids (Wiley, New York 1983) A. Khachaturyan: Theory of Structural Transformations in Solids (Wiley, New York 1983)
21.38.
go back to reference T. Mura: Micromechanics of Defects in Solids, 2nd edn. (Kluwer, Dordrecht 1991) T. Mura: Micromechanics of Defects in Solids, 2nd edn. (Kluwer, Dordrecht 1991)
21.39.
go back to reference L.-Q. Chen, J. Shen: Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun. 108, 147–158 (1998)CrossRef L.-Q. Chen, J. Shen: Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun. 108, 147–158 (1998)CrossRef
21.40.
go back to reference P.H. Leo, J.S. Lowenngrub, H.J. Jou: A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater. 46, 2113–2130 (1998)CrossRef P.H. Leo, J.S. Lowenngrub, H.J. Jou: A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater. 46, 2113–2130 (1998)CrossRef
21.41.
go back to reference M.E. Glicksman: Diffusion in Solids (Wiley, New York 2000) M.E. Glicksman: Diffusion in Solids (Wiley, New York 2000)
21.42.
go back to reference M. Doi, T. Koyama, T. Kozakai: Experimental and theoretical investigation of the phase decomposition in ZrO_2-YO_1.5 system, Proc. Fourth Pac. Rim Int. Conf. Adv. Mater. Process (PRICM 4), Honolulu 2001, ed. by S. Hanada, Z. Zhong, S.W. Nam, R.N. Wright (The Japan Institute of Metals, Sendai 2001) 741–744 M. Doi, T. Koyama, T. Kozakai: Experimental and theoretical investigation of the phase decomposition in ZrO_2-YO_1.5 system, Proc. Fourth Pac. Rim Int. Conf. Adv. Mater. Process (PRICM 4), Honolulu 2001, ed. by S. Hanada, Z. Zhong, S.W. Nam, R.N. Wright (The Japan Institute of Metals, Sendai 2001) 741–744
21.43.
go back to reference K. Otsuka, C.M. Wayman (Eds.): Shape Memory Materials (Cambridge Univ. Press, Cambridge 1998) K. Otsuka, C.M. Wayman (Eds.): Shape Memory Materials (Cambridge Univ. Press, Cambridge 1998)
21.44.
go back to reference T. Koyama, H. Onodera: Phase-field simulation of microstructure changes in Ni_2MnGa ferromagnetic alloy under external stress and magnetic fields, Mater. Trans. JIM 44, 2503–2508 (2003)CrossRef T. Koyama, H. Onodera: Phase-field simulation of microstructure changes in Ni_2MnGa ferromagnetic alloy under external stress and magnetic fields, Mater. Trans. JIM 44, 2503–2508 (2003)CrossRef
21.45.
go back to reference T. Koyama, H. Onodera: Modeling of microstructure changes in FePt nano-granular thin films using the phase-field method, Mater. Trans. JIM 44, 1523–1528 (2003)CrossRef T. Koyama, H. Onodera: Modeling of microstructure changes in FePt nano-granular thin films using the phase-field method, Mater. Trans. JIM 44, 1523–1528 (2003)CrossRef
21.46.
go back to reference Y.K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, K. Hono: Size dependence of ordering in FePt nanoparticles, J. Appl. Phys. 95, 2690–2696 (2004)CrossRef Y.K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, K. Hono: Size dependence of ordering in FePt nanoparticles, J. Appl. Phys. 95, 2690–2696 (2004)CrossRef
21.47.
go back to reference A. Hubert, R. Schafer: Magnetic Domains (Springer, Berlin, Heidelberg 1998) A. Hubert, R. Schafer: Magnetic Domains (Springer, Berlin, Heidelberg 1998)
21.48.
go back to reference H. Kronmüller, M. Fähnle: Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge Univ. Press, Cambridge 2003) H. Kronmüller, M. Fähnle: Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge Univ. Press, Cambridge 2003)
Metadata
Title
Phase Field Approach
Author
Toshiyuki Koyama
Copyright Year
2011
DOI
https://doi.org/10.1007/978-3-642-16641-9_21

Premium Partners