Skip to main content
Top
Published in:

2025 | OriginalPaper | Chapter

Phase-Field for Compaction Bands in Wet and Dry Limestones

Authors : Ronaldo I. Borja, Sabrina C. Y. Ip

Published in: Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a coupled hydromechanical phase-field framework for capturing the formation and propagation of compaction bands in porous media under wet and dry conditions. Breakage mechanics is used to characterize the free energy function in the intact and damaged material, while the phase-field variable provides a measure of the degree of grain crushing. Permeability reduction in the zone of compaction localization is modeled using the Kozeny-Carman equation accounting for microstructural evolution. The effect of water-weakening on the rock’s plastic response is described by a modified Cam-Clay model that is enhanced to accommodate partial saturation. Numerical simulations on Savonnières limestone samples demonstrate the ability of the model to capture compaction band formation in dry and wet rock samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mollema, P.N., Antonellini, M.A.: Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone. Tectonophysics 267(1–4), 209–228 (1996)CrossRef Mollema, P.N., Antonellini, M.A.: Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone. Tectonophysics 267(1–4), 209–228 (1996)CrossRef
2.
go back to reference Aydin, A., Borja, R.I., Eichhubl, P.: Geological and mathematical framework for failure modes in granular rock. J. Struct. Geol. 28(1), 83–98 (2006)CrossRef Aydin, A., Borja, R.I., Eichhubl, P.: Geological and mathematical framework for failure modes in granular rock. J. Struct. Geol. 28(1), 83–98 (2006)CrossRef
3.
go back to reference Borja, R.I., Aydin, A.: Computational modeling of deformation bands in granular media, I: geological and mathematical framework. Comput. Methods Appl. Mech. Eng. 193(27–29), 2667–2698 (2004)MathSciNetCrossRef Borja, R.I., Aydin, A.: Computational modeling of deformation bands in granular media, I: geological and mathematical framework. Comput. Methods Appl. Mech. Eng. 193(27–29), 2667–2698 (2004)MathSciNetCrossRef
4.
go back to reference Fossen, H., Schultz, R.A., Torabi, A.: Conditions and implications for compaction band formation in the Navajo Sandstone, Utah. J. Struct. Geol. 33(10), 1477–1490 (2011)CrossRef Fossen, H., Schultz, R.A., Torabi, A.: Conditions and implications for compaction band formation in the Navajo Sandstone, Utah. J. Struct. Geol. 33(10), 1477–1490 (2011)CrossRef
5.
go back to reference Sternlof, K.R., Rudnicki, J.W., Pollard, D.D.: Anticrack inclusion model for compaction bands in sandstone. J. Geophys. Res. Solid Earth 110, B11403 (2005)CrossRef Sternlof, K.R., Rudnicki, J.W., Pollard, D.D.: Anticrack inclusion model for compaction bands in sandstone. J. Geophys. Res. Solid Earth 110, B11403 (2005)CrossRef
6.
go back to reference Dresen, G., Stanchits, S., Rybacki, E.: Borehole breakout evolution through acoustic emission location analysis. Int. J. Rock Mech. Min. Sci. 47(3), 426–435 (2010)CrossRef Dresen, G., Stanchits, S., Rybacki, E.: Borehole breakout evolution through acoustic emission location analysis. Int. J. Rock Mech. Min. Sci. 47(3), 426–435 (2010)CrossRef
7.
go back to reference Haimson, B.: Micromechanisms of borehole instability leading to breakouts in rocks. Int. J. Rock Mech. Min. Sci. 44(2), 157–173 (2007)CrossRef Haimson, B.: Micromechanisms of borehole instability leading to breakouts in rocks. Int. J. Rock Mech. Min. Sci. 44(2), 157–173 (2007)CrossRef
8.
go back to reference Olsson, W.A., Holcomb, D.J., Rudnicki, J.W.: Compaction localization in porous sandstone: implications for reservoir mechanics. Oil Gas Sci. Technol. 57(5), 591–599 (2002)CrossRef Olsson, W.A., Holcomb, D.J., Rudnicki, J.W.: Compaction localization in porous sandstone: implications for reservoir mechanics. Oil Gas Sci. Technol. 57(5), 591–599 (2002)CrossRef
9.
go back to reference Rutqvist, J.: The geomechanics of CO\(_2\) storage in deep sedimentary formations. Geotech. Geol. Eng. 30(3), 525–551 (2012)CrossRef Rutqvist, J.: The geomechanics of CO\(_2\) storage in deep sedimentary formations. Geotech. Geol. Eng. 30(3), 525–551 (2012)CrossRef
10.
go back to reference Eichhubl, P., Hooker, J.N., Laubach, S.E.: Pure and shear-enhanced compaction bands in Aztec Sandstone. J. Struct. Geol. 32(12), 1873–1886 (2010)CrossRef Eichhubl, P., Hooker, J.N., Laubach, S.E.: Pure and shear-enhanced compaction bands in Aztec Sandstone. J. Struct. Geol. 32(12), 1873–1886 (2010)CrossRef
11.
go back to reference Hill, R.: Analysis of Deformation Bands in the Aztec Sandstone, Valley of Fire State Park, Nevada, MS Thesis. University of Nevada, Las Vegas (1989) Hill, R.: Analysis of Deformation Bands in the Aztec Sandstone, Valley of Fire State Park, Nevada, MS Thesis. University of Nevada, Las Vegas (1989)
12.
go back to reference Liu, C., Pollard, D.D., Deng, S., Aydin, A.: Mechanism of formation of wiggly compaction bands in porous sandstone: 1. Observations and conceptual model. J. Geophys. Res. Solid Earth 120(12), 8138–8152 (2015)CrossRef Liu, C., Pollard, D.D., Deng, S., Aydin, A.: Mechanism of formation of wiggly compaction bands in porous sandstone: 1. Observations and conceptual model. J. Geophys. Res. Solid Earth 120(12), 8138–8152 (2015)CrossRef
13.
go back to reference Leuthold, J., Gerolymatou, E., Vergara, M.R., Triantafyllidis, T.: Effect of compaction banding on the hydraulic properties of porous rock: part I-experimental investigation. Rock Mech. Rock Eng. 54(6), 2671–83 (2021)CrossRef Leuthold, J., Gerolymatou, E., Vergara, M.R., Triantafyllidis, T.: Effect of compaction banding on the hydraulic properties of porous rock: part I-experimental investigation. Rock Mech. Rock Eng. 54(6), 2671–83 (2021)CrossRef
14.
go back to reference Sari, M., Sarout, J., Poulet, T., Dautriat, J., Veveakis, M.: The brittle-ductile transition and the formation of compaction bands in the Savonnières Limestone: impact of the stress and pore fluid. Rock Mech. Rock Eng. 55(11), 6541–53 (2022)CrossRef Sari, M., Sarout, J., Poulet, T., Dautriat, J., Veveakis, M.: The brittle-ductile transition and the formation of compaction bands in the Savonnières Limestone: impact of the stress and pore fluid. Rock Mech. Rock Eng. 55(11), 6541–53 (2022)CrossRef
15.
go back to reference Stanchits, S., Fortin, J., Gueguen, Y., Dresen, G.: Initiation and propagation of compaction bands in dry and wet Bentheim sandstone. Pure Appl. Geophys. 166(5), 843–868 (2009)CrossRef Stanchits, S., Fortin, J., Gueguen, Y., Dresen, G.: Initiation and propagation of compaction bands in dry and wet Bentheim sandstone. Pure Appl. Geophys. 166(5), 843–868 (2009)CrossRef
16.
go back to reference Tembe, S., Baud, P., Wong, T.F.: Stress conditions for the propagation of discrete compaction bands in porous sandstone. J. Geophys. Res. Solid Earth 113, B09409 (2008)CrossRef Tembe, S., Baud, P., Wong, T.F.: Stress conditions for the propagation of discrete compaction bands in porous sandstone. J. Geophys. Res. Solid Earth 113, B09409 (2008)CrossRef
17.
go back to reference Ip, S.C.Y., Choo, J., Borja, R.I.: Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks. Acta Geotech. 16(11), 3381–3400 (2022)CrossRef Ip, S.C.Y., Choo, J., Borja, R.I.: Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks. Acta Geotech. 16(11), 3381–3400 (2022)CrossRef
18.
go back to reference Ip, S.C.Y., Borja, R.I.: Evolution of anisotropy with saturation and its implications for the elastoplastic responses of clay rocks. Int. J. Numer. Anal. Meth. Geomech. 46(1), 23–46 (2022)CrossRef Ip, S.C.Y., Borja, R.I.: Evolution of anisotropy with saturation and its implications for the elastoplastic responses of clay rocks. Int. J. Numer. Anal. Meth. Geomech. 46(1), 23–46 (2022)CrossRef
19.
go back to reference Ip, S.C.Y., Borja, R.I.: Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model. Acta Geotech. 18, 2289–2307 (2023)CrossRef Ip, S.C.Y., Borja, R.I.: Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model. Acta Geotech. 18, 2289–2307 (2023)CrossRef
20.
go back to reference Liu, C., Pollard, D.D., Deng, S., Aydin, A.: Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method. J. Geophys. Res. Solid Earth 120(12), 8153–8168 (2015)CrossRef Liu, C., Pollard, D.D., Deng, S., Aydin, A.: Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method. J. Geophys. Res. Solid Earth 120(12), 8153–8168 (2015)CrossRef
21.
go back to reference Katsman, R., Aharonov, E., Scher, H.: Numerical simulation of compaction bands in high-porosity sedimentary rock. Mech. Mater. 37(1), 143–162 (2005)CrossRef Katsman, R., Aharonov, E., Scher, H.: Numerical simulation of compaction bands in high-porosity sedimentary rock. Mech. Mater. 37(1), 143–162 (2005)CrossRef
22.
go back to reference Katsman, R., Aharonov, E.: A study of compaction bands originating from cracks, notches, and compacted defects. J. Struct. Geol. 28(3), 508–518 (2006)CrossRef Katsman, R., Aharonov, E.: A study of compaction bands originating from cracks, notches, and compacted defects. J. Struct. Geol. 28(3), 508–518 (2006)CrossRef
23.
go back to reference Marketos, G., Bolton, M.D.: Compaction bands simulated in discrete element models. J. Struct. Geol. 31(5), 479–490 (2009)CrossRef Marketos, G., Bolton, M.D.: Compaction bands simulated in discrete element models. J. Struct. Geol. 31(5), 479–490 (2009)CrossRef
24.
go back to reference Wang, B., Chen, Y., Wong, T.F.: A discrete element model for the development of compaction localization in granular rock. J. Geophys. Res. Solid Earth 113, B03202 (2008) Wang, B., Chen, Y., Wong, T.F.: A discrete element model for the development of compaction localization in granular rock. J. Geophys. Res. Solid Earth 113, B03202 (2008)
25.
go back to reference Wu, H., Guo, N., Zhao, J.: Multiscale modeling and analysis of compaction bands in high-porosity sandstones. Acta Geotech. 13, 575–599 (2018)CrossRef Wu, H., Guo, N., Zhao, J.: Multiscale modeling and analysis of compaction bands in high-porosity sandstones. Acta Geotech. 13, 575–599 (2018)CrossRef
26.
go back to reference Challa, V., Issen, K.A.: Conditions for compaction band formation in porous rock using a two-yield surface model. J. Eng. Mech. 130(9), 1089–1097 (2004)CrossRef Challa, V., Issen, K.A.: Conditions for compaction band formation in porous rock using a two-yield surface model. J. Eng. Mech. 130(9), 1089–1097 (2004)CrossRef
27.
go back to reference Chemenda, A.I.: The formation of tabular compaction-band arrays: theoretical and numerical analysis. J. Mech. Phys. Solids 57(5), 851–868 (2009)CrossRef Chemenda, A.I.: The formation of tabular compaction-band arrays: theoretical and numerical analysis. J. Mech. Phys. Solids 57(5), 851–868 (2009)CrossRef
28.
go back to reference Das, A., Nguyen, G.D., Einav, I.: Compaction bands due to grain crushing in porous rocks: a theoretical approach based on breakage mechanics. J. Geophys. Res. Solid Earth 116, 808203 (2011)CrossRef Das, A., Nguyen, G.D., Einav, I.: Compaction bands due to grain crushing in porous rocks: a theoretical approach based on breakage mechanics. J. Geophys. Res. Solid Earth 116, 808203 (2011)CrossRef
29.
go back to reference Issen, K.A., Rudnicki, J.W.: Conditions for compaction bands in porous rock. J. Geophys. Res. Solid Earth 105(B9), 21529–21536 (2000)CrossRef Issen, K.A., Rudnicki, J.W.: Conditions for compaction bands in porous rock. J. Geophys. Res. Solid Earth 105(B9), 21529–21536 (2000)CrossRef
30.
go back to reference Olsson, W.A.: Theoretical and experimental investigation of compaction bands in porous rock. J. Geophys. Res. Solid Earth 104(B4), 7219–7228 (1999)CrossRef Olsson, W.A.: Theoretical and experimental investigation of compaction bands in porous rock. J. Geophys. Res. Solid Earth 104(B4), 7219–7228 (1999)CrossRef
31.
go back to reference Rudnicki, J.W., Sternlof, K.R.: Energy release model of compaction band propagation. Geophys. Res. Lett. 32, 16303 (2005)CrossRef Rudnicki, J.W., Sternlof, K.R.: Energy release model of compaction band propagation. Geophys. Res. Lett. 32, 16303 (2005)CrossRef
32.
go back to reference Borja, R.I.: A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation. Comput. Methods Appl. Mech. Eng. 190(11–12), 1529–1549 (2000)CrossRef Borja, R.I.: A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation. Comput. Methods Appl. Mech. Eng. 190(11–12), 1529–1549 (2000)CrossRef
33.
go back to reference Liu, F., Borja, R.I.: A contact algorithm for frictional crack propagation with the extended finite element method. Int. J. Numer. Meth. Eng. 76(10), 1489–1512 (2008)MathSciNetCrossRef Liu, F., Borja, R.I.: A contact algorithm for frictional crack propagation with the extended finite element method. Int. J. Numer. Meth. Eng. 76(10), 1489–1512 (2008)MathSciNetCrossRef
34.
go back to reference Ip, S.C.Y., Borja, R.I.: A phase-field approach for compaction band formation due to grain crushing. Int. J. Numer. Anal. Meth. Geomech. 46(16), 2965–87 (2022)CrossRef Ip, S.C.Y., Borja, R.I.: A phase-field approach for compaction band formation due to grain crushing. Int. J. Numer. Anal. Meth. Geomech. 46(16), 2965–87 (2022)CrossRef
35.
go back to reference Ip, S.C.Y., Borja, R.I.: Modeling heterogeneity and permeability evolution in a compaction band using a phase-field approach. J. Mech. Phys. Solids 181, 105441 (2023)MathSciNetCrossRef Ip, S.C.Y., Borja, R.I.: Modeling heterogeneity and permeability evolution in a compaction band using a phase-field approach. J. Mech. Phys. Solids 181, 105441 (2023)MathSciNetCrossRef
36.
go back to reference Wang, Y., Borja, R.I., Wu, W.: Dynamic strain localization into a compaction band via a phase-field approach. J. Mech. Phys. Solids 173, 105228 (2023)MathSciNetCrossRef Wang, Y., Borja, R.I., Wu, W.: Dynamic strain localization into a compaction band via a phase-field approach. J. Mech. Phys. Solids 173, 105228 (2023)MathSciNetCrossRef
37.
go back to reference Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)MathSciNetCrossRef Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)MathSciNetCrossRef
38.
go back to reference Choo, J., Sun, W.: Coupled phase-field and plasticity modeling of geological materials: from brittle fracture to ductile flow. Comput. Methods Appl. Mech. Eng. 330, 1–32 (2018)MathSciNetCrossRef Choo, J., Sun, W.: Coupled phase-field and plasticity modeling of geological materials: from brittle fracture to ductile flow. Comput. Methods Appl. Mech. Eng. 330, 1–32 (2018)MathSciNetCrossRef
39.
go back to reference Fei, F., Choo, J.: A phase-field model of frictional shear fracture in geologic materials. Comput. Methods Appl. Mech. Eng. 369, 113265 (2020)MathSciNetCrossRef Fei, F., Choo, J.: A phase-field model of frictional shear fracture in geologic materials. Comput. Methods Appl. Mech. Eng. 369, 113265 (2020)MathSciNetCrossRef
40.
go back to reference Xu, Y., Zhou, S., Xia, C., Hu, Y.: A new phase field model for mixed-mode brittle fractures in rocks modified from triple shear energy criterion. Acta Geotech. 17(12), 5613–37 (2022)CrossRef Xu, Y., Zhou, S., Xia, C., Hu, Y.: A new phase field model for mixed-mode brittle fractures in rocks modified from triple shear energy criterion. Acta Geotech. 17(12), 5613–37 (2022)CrossRef
41.
go back to reference Zhou, S., Zhuang, X., Rabczuk, T.: Phase field modeling of brittle compressive-shear fractures in rock-like materials: a new driving force and a hybrid formulation. Comput. Methods Appl. Mech. Eng. 355, 729–52 (2019)MathSciNetCrossRef Zhou, S., Zhuang, X., Rabczuk, T.: Phase field modeling of brittle compressive-shear fractures in rock-like materials: a new driving force and a hybrid formulation. Comput. Methods Appl. Mech. Eng. 355, 729–52 (2019)MathSciNetCrossRef
42.
go back to reference Borja, R.I.: Cam-clay plasticity. Part V: a mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput. Methods Appl. Mech. Eng. 193, 5301–5338 (2004)CrossRef Borja, R.I.: Cam-clay plasticity. Part V: a mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput. Methods Appl. Mech. Eng. 193, 5301–5338 (2004)CrossRef
43.
go back to reference Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)CrossRef Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)CrossRef
44.
go back to reference Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng. 83(10), 1273–1311 (2010)MathSciNetCrossRef Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng. 83(10), 1273–1311 (2010)MathSciNetCrossRef
45.
go back to reference Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)MathSciNetCrossRef Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)MathSciNetCrossRef
46.
go back to reference Alessi, R., Ambati, M., Gerasimov, T., Vidoli, S., De Lorenzis, L.: Comparison of phase-field models of fracture coupled with plasticity. In: Oñate, E., Peric, D., de Souza Neto, E., Chiumenti, M. (eds.) Advances in Computational Plasticity. Computational Methods in Applied Sciences, vol. 46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60885-3_1CrossRef Alessi, R., Ambati, M., Gerasimov, T., Vidoli, S., De Lorenzis, L.: Comparison of phase-field models of fracture coupled with plasticity. In: Oñate, E., Peric, D., de Souza Neto, E., Chiumenti, M. (eds.) Advances in Computational Plasticity. Computational Methods in Applied Sciences, vol. 46. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-60885-3_​1CrossRef
47.
go back to reference Ambati, M., Kruse, R., De Lorenzis, L.: A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech. 57(1), 149–167 (2016)MathSciNetCrossRef Ambati, M., Kruse, R., De Lorenzis, L.: A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech. 57(1), 149–167 (2016)MathSciNetCrossRef
48.
go back to reference Borden, M.J., Hughes, T.J., Landis, C.M., Anvari, A., Lee, I.J.: A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput. Methods Appl. Mech. Eng. 312, 130–166 (2016)MathSciNetCrossRef Borden, M.J., Hughes, T.J., Landis, C.M., Anvari, A., Lee, I.J.: A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput. Methods Appl. Mech. Eng. 312, 130–166 (2016)MathSciNetCrossRef
49.
go back to reference Miehe, C., Schänzel, L.M.: Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J. Mech. Phys. Solids 65, 93–113 (2014)MathSciNetCrossRef Miehe, C., Schänzel, L.M.: Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J. Mech. Phys. Solids 65, 93–113 (2014)MathSciNetCrossRef
50.
go back to reference Freddi, F., Royer-Carfagni, G.: Phase-field slip-line theory of plasticity. J. Mech. Phys. Solids 94, 257–272 (2016)MathSciNetCrossRef Freddi, F., Royer-Carfagni, G.: Phase-field slip-line theory of plasticity. J. Mech. Phys. Solids 94, 257–272 (2016)MathSciNetCrossRef
51.
go back to reference Giambanco, G., Ribolla, E.L.M.: A phase-field model for strain localization analysis in softening elastoplastic materials. Int. J. Solids Struct. 172, 84–96 (2019)CrossRef Giambanco, G., Ribolla, E.L.M.: A phase-field model for strain localization analysis in softening elastoplastic materials. Int. J. Solids Struct. 172, 84–96 (2019)CrossRef
53.
go back to reference Einav, I.: Breakage mechanics-part II: modelling granular materials. J. Mech. Phys. Solids 55(6), 1298–1320 (2007)MathSciNetCrossRef Einav, I.: Breakage mechanics-part II: modelling granular materials. J. Mech. Phys. Solids 55(6), 1298–1320 (2007)MathSciNetCrossRef
54.
go back to reference Borja, R.I.: Finite element simulation of strain localization with large deformation: capturing strong discontinuity using a Petrov-Galerkin multiscale formulation. Comput. Methods Appl. Mech. Eng. 191(27–28), 2949–2978 (2002)MathSciNetCrossRef Borja, R.I.: Finite element simulation of strain localization with large deformation: capturing strong discontinuity using a Petrov-Galerkin multiscale formulation. Comput. Methods Appl. Mech. Eng. 191(27–28), 2949–2978 (2002)MathSciNetCrossRef
55.
go back to reference Borja, R.I.: Bifurcation of elastoplastic solids to shear band mode at finite strain. Comput. Methods Appl. Mech. Eng. 191(46), 5287–5314 (2002)MathSciNetCrossRef Borja, R.I.: Bifurcation of elastoplastic solids to shear band mode at finite strain. Comput. Methods Appl. Mech. Eng. 191(46), 5287–5314 (2002)MathSciNetCrossRef
56.
go back to reference Borja, R.I.: Computational modeling of deformation bands in granular media. II. Numerical simulations. Comput. Methods Appl. Mech. Eng. 193(27–29), 2699–2718 (2004)MathSciNetCrossRef Borja, R.I.: Computational modeling of deformation bands in granular media. II. Numerical simulations. Comput. Methods Appl. Mech. Eng. 193(27–29), 2699–2718 (2004)MathSciNetCrossRef
58.
go back to reference Borja, R.I., Lee, S.R.: Cam-Clay plasticity, part 1: Implicit integration of elasto-plastic constitutive relations. Comput. Methods Appl. Mech. Eng. 78(1), 49–72 (1990)CrossRef Borja, R.I., Lee, S.R.: Cam-Clay plasticity, part 1: Implicit integration of elasto-plastic constitutive relations. Comput. Methods Appl. Mech. Eng. 78(1), 49–72 (1990)CrossRef
59.
go back to reference Borja, R.I.: Cam-Clay plasticity, part II: Implicit integration of constitutive equation based on a nonlinear elastic stress predictor. Comput. Methods Appl. Mech. Eng. 88(2), 225–240 (1991)MathSciNetCrossRef Borja, R.I.: Cam-Clay plasticity, part II: Implicit integration of constitutive equation based on a nonlinear elastic stress predictor. Comput. Methods Appl. Mech. Eng. 88(2), 225–240 (1991)MathSciNetCrossRef
60.
go back to reference Horpibulsuk, S., Liu, M.D., Liyanapathirana, D.S., Suebsuk, J.: Behaviour of cemented clay simulated via the theoretical framework of the structured Cam Clay model. Comput. Geotech. 37(1–2), 1–9 (2010)CrossRef Horpibulsuk, S., Liu, M.D., Liyanapathirana, D.S., Suebsuk, J.: Behaviour of cemented clay simulated via the theoretical framework of the structured Cam Clay model. Comput. Geotech. 37(1–2), 1–9 (2010)CrossRef
61.
go back to reference Roscoe, K.H., Burland, J.B., Heyman, J., Leckie, F.A.: On the generalized stress-strain behaviour of wet clay. In: Engineering Plasticity, Cambridge, pp. 535–609 (1968) Roscoe, K.H., Burland, J.B., Heyman, J., Leckie, F.A.: On the generalized stress-strain behaviour of wet clay. In: Engineering Plasticity, Cambridge, pp. 535–609 (1968)
62.
go back to reference van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)CrossRef van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)CrossRef
63.
go back to reference Baud, P., Zhu, W., Wong, T.F.: Failure mode and weakening effect of water on sandstone. J. Geophys. Res. Solid Earth 105(B7), 16371–16389 (2000)CrossRef Baud, P., Zhu, W., Wong, T.F.: Failure mode and weakening effect of water on sandstone. J. Geophys. Res. Solid Earth 105(B7), 16371–16389 (2000)CrossRef
64.
go back to reference Bultreys, T., De Boever, W., Van Hoorebeke, L., Cnudde, V.: A multi-scale, image-based pore network modeling approach to simulate two-phase flow in heterogeneous rocks. In: 2015 International Symposium of the Society of Core Analysts (SCA 2015). Society of Core Analysts (SCA) (2015) Bultreys, T., De Boever, W., Van Hoorebeke, L., Cnudde, V.: A multi-scale, image-based pore network modeling approach to simulate two-phase flow in heterogeneous rocks. In: 2015 International Symposium of the Society of Core Analysts (SCA 2015). Society of Core Analysts (SCA) (2015)
65.
go back to reference Zhao, Y., Borja, R.I.: A double-yield-surface plasticity theory for transversely isotropic rocks. Acta Geotech. 17(11), 5201–21 (2022)CrossRef Zhao, Y., Borja, R.I.: A double-yield-surface plasticity theory for transversely isotropic rocks. Acta Geotech. 17(11), 5201–21 (2022)CrossRef
66.
go back to reference Zhao, Y., Semnani, S.J., Yin, Q., Borja, R.I.: On the strength of transversely isotropic rocks. Int. J. Numer. Anal. Meth. Geomech. 42(16), 1917–34 (2018)CrossRef Zhao, Y., Semnani, S.J., Yin, Q., Borja, R.I.: On the strength of transversely isotropic rocks. Int. J. Numer. Anal. Meth. Geomech. 42(16), 1917–34 (2018)CrossRef
67.
go back to reference Borja, R.I., Yin, Q., Zhao, Y.: Cam-Clay plasticity. Part IX: on the anisotropy, heterogeneity, and viscoplasticity of shale. Comput. Methods Appl. Mech. Eng. 360, 112695 (2020)MathSciNetCrossRef Borja, R.I., Yin, Q., Zhao, Y.: Cam-Clay plasticity. Part IX: on the anisotropy, heterogeneity, and viscoplasticity of shale. Comput. Methods Appl. Mech. Eng. 360, 112695 (2020)MathSciNetCrossRef
Metadata
Title
Phase-Field for Compaction Bands in Wet and Dry Limestones
Authors
Ronaldo I. Borja
Sabrina C. Y. Ip
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-71896-0_1

Premium Partners