Skip to main content
Top
Published in: Strength of Materials 6/2020

10-03-2021

Phase Field Modeling of Hertzian Cone Cracks Under Spherical Indentation

Authors: V. M. Kindrachuk, A. Klunker

Published in: Strength of Materials | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A phase field model of brittle fracture has been developed to simulate the Hertzian crack induced by penetration of a rigid sphere to an isotropic linear-elastic half-space. The fracture formation is regarded as a diffusive field variable, which is zero for the intact material and unity if there is a crack. Crack growth is assumed to be driven by a strain invariant. The numerical implementation is performed with the finite element method and an implicit time integration scheme. The mechanical equilibrium and the phase field equations are solved in a staggered manner, sequentially updating the displacement field and the phase field variable. Numerical examples demonstrate the capability of the model to reproduce the nucleation and growth of the Hertzian cone crack.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Lawn, Fracture of Brittle Solids, Cambridge University Press, Cambridge (1993).CrossRef B. Lawn, Fracture of Brittle Solids, Cambridge University Press, Cambridge (1993).CrossRef
2.
go back to reference A. C. Fischer-Cripps, Introduction to Contact Mechanics, Springer (2007). A. C. Fischer-Cripps, Introduction to Contact Mechanics, Springer (2007).
3.
go back to reference O. Datsyshyn and V. Panasyuk, Structural Integrity Assessment of Engineering Components under Cyclic Contact, Springer (2019). O. Datsyshyn and V. Panasyuk, Structural Integrity Assessment of Engineering Components under Cyclic Contact, Springer (2019).
4.
go back to reference J. H. Lee, Y. F. Gao, K. E. Johanns, and G. M. Pharr, “Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials,” Acta Mater., 60, No. 15, 5448–5467 (2012).CrossRef J. H. Lee, Y. F. Gao, K. E. Johanns, and G. M. Pharr, “Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials,” Acta Mater., 60, No. 15, 5448–5467 (2012).CrossRef
6.
go back to reference W. Brocks and I. Scheider, “Reliable J-values: Numerical aspects of the path- dependence of the J-integral in incremental plasticity,” Materialprüfung, 45, No. 6, 264–275 (2003). W. Brocks and I. Scheider, “Reliable J-values: Numerical aspects of the path- dependence of the J-integral in incremental plasticity,” Materialprüfung, 45, No. 6, 264–275 (2003).
7.
go back to reference Z. W. Chen, X. Wang, A. Atkinson, and N. Brandon, “Spherical indentation of porous ceramics: Cracking and toughness,” J. Eur. Ceram. Soc., 36, No. 14, 3473–3480 (2016).CrossRef Z. W. Chen, X. Wang, A. Atkinson, and N. Brandon, “Spherical indentation of porous ceramics: Cracking and toughness,” J. Eur. Ceram. Soc., 36, No. 14, 3473–3480 (2016).CrossRef
8.
go back to reference C. Kocer and R. E. Collins, “Angle of Hertzian cone cracks,” J. Am. Ceram. Soc., 81, No. 7, 1736–1742 (1998).CrossRef C. Kocer and R. E. Collins, “Angle of Hertzian cone cracks,” J. Am. Ceram. Soc., 81, No. 7, 1736–1742 (1998).CrossRef
9.
go back to reference S. Y. Chen, T. N. Farris, and S. Chandrasekari, “Contact mechanics of Hertzian cone cracking,” Int. J. Solids Struct., 32, Nos. 3–4, 329–333, 335–340 (1995). S. Y. Chen, T. N. Farris, and S. Chandrasekari, “Contact mechanics of Hertzian cone cracking,” Int. J. Solids Struct., 32, Nos. 3–4, 329–333, 335–340 (1995).
10.
go back to reference M. Ambati, T. Gerasimov, and L. De Lorenzis, “A review on phase-field models of brittle fracture and a new fast hybrid formulation,” Comput. Mech., 55, No. 2, 383–405 (2015).CrossRef M. Ambati, T. Gerasimov, and L. De Lorenzis, “A review on phase-field models of brittle fracture and a new fast hybrid formulation,” Comput. Mech., 55, No. 2, 383–405 (2015).CrossRef
11.
go back to reference M. Strobl, L. Morand, and T. Seelig, “Simulation of Hertzian cone cracks using a phase field description for fracture,” PAMM, 16, No. 1, 177–178 (2016).CrossRef M. Strobl, L. Morand, and T. Seelig, “Simulation of Hertzian cone cracks using a phase field description for fracture,” PAMM, 16, No. 1, 177–178 (2016).CrossRef
12.
go back to reference C. Bilgen and K. Weinberg, “On the crack-driving force of phase-field models in linearized and finite elasticity,” Comput. Method. Appl. M., 353, 348–372 (2019).CrossRef C. Bilgen and K. Weinberg, “On the crack-driving force of phase-field models in linearized and finite elasticity,” Comput. Method. Appl. M., 353, 348–372 (2019).CrossRef
13.
go back to reference C. Miehe, F. Welschinger, and M. Hofacker, “Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations,” Int. J. Numer. Meth. Eng., 83, No. 10, 1273–1311 (2010).CrossRef C. Miehe, F. Welschinger, and M. Hofacker, “Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations,” Int. J. Numer. Meth. Eng., 83, No. 10, 1273–1311 (2010).CrossRef
15.
go back to reference D. Louapre and K. Breder, “Hertzian indentation stress field equations,” Int. J. Appl. Ceram. Tec., 12, No. 5, 1071–1079 (2015).CrossRef D. Louapre and K. Breder, “Hertzian indentation stress field equations,” Int. J. Appl. Ceram. Tec., 12, No. 5, 1071–1079 (2015).CrossRef
16.
go back to reference B. Paliwal, R. Tandon, T. E. Buchheit, and J. M. Rodelas, “An assessment of the effectiveness of the Hertzian indentation technique for determining the fracture toughness of brittle materials,” J. Am. Ceram. Soc., 94, No. 7, 2153–2161 (2011).CrossRef B. Paliwal, R. Tandon, T. E. Buchheit, and J. M. Rodelas, “An assessment of the effectiveness of the Hertzian indentation technique for determining the fracture toughness of brittle materials,” J. Am. Ceram. Soc., 94, No. 7, 2153–2161 (2011).CrossRef
Metadata
Title
Phase Field Modeling of Hertzian Cone Cracks Under Spherical Indentation
Authors
V. M. Kindrachuk
A. Klunker
Publication date
10-03-2021
Publisher
Springer US
Published in
Strength of Materials / Issue 6/2020
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00251-9

Other articles of this Issue 6/2020

Strength of Materials 6/2020 Go to the issue

Premium Partners