Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Metallurgist 1-2/2022

02-07-2022

Phase Transformation during Metallothermic Reduction of Tantalite

Authors: R. I. Gulyaeva, L. Yu. Udoeva, S. A. Petrova, S. V. Sergeeva, K. V. Pikulin, S. N. Agafonov

Published in: Metallurgist | Issue 1-2/2022

Login to get access
share
SHARE

Abstract

In this study, phase transformations were examined during low temperature interactions of natural tantalite with powders of aluminum and Ca–Al addition alloy (69.4 wt% Ca) using thermography, X-ray diffraction, and X-ray spectral microanalysis. The phase and elemental compositions of the initial mineral and the products of its metallothermic reduction were determined. Thermodynamic modeling of “mineral–reducing agent” interactions in the systems was performed in the temperature range of 500°C–3000°C, and the temperatures of the resulting products were calculated without taking into account heat losses. Experimental studies on reduction processes were performed under conditions of continuous heating of the mineral with reagents to 1200°C–1550°C in an argon flow. The studied mineral sample was manganotantalite with the composition of Mn0.94(Nb0.495Ta0.505)2.14O6 with a melting point of 1506°C. The aluminothermic reduction proceeded with the formation of intermetallic phases based on the Ta–Nb, Ta–Nb–Mn, and Nb–Mn–Al systems, and upon interaction with the Ca–Al alloy, the metal phase included solid solutions, such as (Nb,Ta)-ss. In both cases, a predominant reduction of niobium and the formation of intermediate suboxides and composite oxides containing niobium and tantalum were noted as a result of the incomplete transformation of manganotantalite during nonisothermal heating in the temperature range under study.
Literature
1.
go back to reference E. E. Nikishina, D. V. Drobot, and E. N. Lebedeva, “Niobium and tantalum: the state of the global market, areas of application, raw materials. Part 1,” Izv. Vyssh. Ucheb. Zav. Tsvetn. Metallurg., No. 5, 28–34 (2013). E. E. Nikishina, D. V. Drobot, and E. N. Lebedeva, “Niobium and tantalum: the state of the global market, areas of application, raw materials. Part 1,” Izv. Vyssh. Ucheb. Zav. Tsvetn. Metallurg., No. 5, 28–34 (2013).
2.
go back to reference E. E. Nikishina, D. V. Drobot, and E. N. Lebedeva, “Niobium and tantalum: the state of the global market, areas of application, raw materials. Part 2,” Izv. Vyssh. Ucheb. Zav. Tsvetn. Metallurg., No. 1, 29–41 (2014). E. E. Nikishina, D. V. Drobot, and E. N. Lebedeva, “Niobium and tantalum: the state of the global market, areas of application, raw materials. Part 2,” Izv. Vyssh. Ucheb. Zav. Tsvetn. Metallurg., No. 1, 29–41 (2014).
4.
go back to reference M. V. Pavlov, I. V. Pavlov, V. F. Pavlov, O. V. Shabanova, and A. V. Shabanov, “Aspects of the processes of pyrometallurgical processing of polymetallic ores of the Chuktukonskoye deposit (Krasnoyarsk Territory),” Khim. Interes. Ustoych. Razvit., No. 23, 263–266 (2015). M. V. Pavlov, I. V. Pavlov, V. F. Pavlov, O. V. Shabanova, and A. V. Shabanov, “Aspects of the processes of pyrometallurgical processing of polymetallic ores of the Chuktukonskoye deposit (Krasnoyarsk Territory),” Khim. Interes. Ustoych. Razvit., No. 23, 263–266 (2015).
5.
go back to reference V. M. Chumarev, V. P. Maryevich, A. N. Mansurova, and S. M. Kazhakhmetov, “Phase formation and reduction kinetics of metals in the interaction of columbite, tantalite, and wodginite with carbon,” Metally, No. 2, 10–15 (2008). V. M. Chumarev, V. P. Maryevich, A. N. Mansurova, and S. M. Kazhakhmetov, “Phase formation and reduction kinetics of metals in the interaction of columbite, tantalite, and wodginite with carbon,” Metally, No. 2, 10–15 (2008).
6.
go back to reference V. M. Orlov, E. N. Kiselev, and M. V. Kryzhanov, “Powders of niobium and tantalum from waste products of lithium niobate and tantalate production,” Khimich. Tekhnolog., 18, No. 4, 146–150 (2017). V. M. Orlov, E. N. Kiselev, and M. V. Kryzhanov, “Powders of niobium and tantalum from waste products of lithium niobate and tantalate production,” Khimich. Tekhnolog., 18, No. 4, 146–150 (2017).
7.
go back to reference R. Munter, A. Parshin, L. Yamshchikov, V. Plotnikov, V. Gorkunov, and V. Kober, “Reduction of tantalum pentoxide with aluminum and calcium: thermodynamic modeling and scale skilled tests,” Proc. Estonian Acad. Sci., 59, No. 3, 243–252 (2010). CrossRef R. Munter, A. Parshin, L. Yamshchikov, V. Plotnikov, V. Gorkunov, and V. Kober, “Reduction of tantalum pentoxide with aluminum and calcium: thermodynamic modeling and scale skilled tests,” Proc. Estonian Acad. Sci., 59, No. 3, 243–252 (2010). CrossRef
8.
go back to reference J.-C. Stoephasius, B. Friedrich, and J. Hammerschmidt, A New Processing Route for Titanium Alloys by Aluminothermic Reduction of Titanium Dioxide and Refining by ESR: The 10th World Conf. on Titanium (Hamburg, Germany, July 2003) (2003). J.-C. Stoephasius, B. Friedrich, and J. Hammerschmidt, A New Processing Route for Titanium Alloys by Aluminothermic Reduction of Titanium Dioxide and Refining by ESR: The 10th World Conf. on Titanium (Hamburg, Germany, July 2003) (2003).
9.
go back to reference W. George, Pat. US 4169722. Fletcher Aluminothermic Process, submitted 08/18/1977; published 10/02/1979. W. George, Pat. US 4169722. Fletcher Aluminothermic Process, submitted 08/18/1977; published 10/02/1979.
10.
go back to reference M. V. Kryzhanov, V. M. Orlov, and V. V. Sukhorukov, “Thermodynamic modeling of magnesiothermic reduction of niobium and tantalum from pentoxides,” Russ. J. Appl. Chem., 83, No. 3, 379–383 (2010). CrossRef M. V. Kryzhanov, V. M. Orlov, and V. V. Sukhorukov, “Thermodynamic modeling of magnesiothermic reduction of niobium and tantalum from pentoxides,” Russ. J. Appl. Chem., 83, No. 3, 379–383 (2010). CrossRef
12.
go back to reference Yu. L. Pliner and G. F. Ignatenko, Recovery of Metal Oxides with Aluminum [in Russian], Metallurgiya, Moscow (1967). Yu. L. Pliner and G. F. Ignatenko, Recovery of Metal Oxides with Aluminum [in Russian], Metallurgiya, Moscow (1967).
13.
go back to reference N. P. Lyakishev, Yu. L. Pliner, G. F. Ignatenko, and S. I. Lappo, Aluminothermy [in Russian], Metallurgiya, Moscow (1978). N. P. Lyakishev, Yu. L. Pliner, G. F. Ignatenko, and S. I. Lappo, Aluminothermy [in Russian], Metallurgiya, Moscow (1978).
14.
go back to reference M. N. Gasik, N. P. Lyakishev, and B. I. Emlin, Theory and Technology of Ferroalloy Production [in Russian], Metallurgiya, Moscow (1988). M. N. Gasik, N. P. Lyakishev, and B. I. Emlin, Theory and Technology of Ferroalloy Production [in Russian], Metallurgiya, Moscow (1988).
15.
go back to reference K. Gupta, “Extractive metallurgy of niobium, tantalum, and vanadium,” Int. Met. Rev., 29, No. 6, 405–444 (1984). K. Gupta, “Extractive metallurgy of niobium, tantalum, and vanadium,” Int. Met. Rev., 29, No. 6, 405–444 (1984).
16.
go back to reference S. N. Tyushnyakov, R. I. Gulyaeva, L. Yu. Udoeva, S. A. Sergeeva, and S. A. Petrova, “Metallothermic reduction of natural cassiterite,” Metallurg, No. 7, 52–61 (2021). S. N. Tyushnyakov, R. I. Gulyaeva, L. Yu. Udoeva, S. A. Sergeeva, and S. A. Petrova, “Metallothermic reduction of natural cassiterite,” Metallurg, No. 7, 52–61 (2021).
17.
go back to reference V. M. Chumarev, S. M. Kozhakhmetov, A. D. Vershinin, T. A. Kokoveshnikova, and A. N. Mansurova, “Study of the kinetics and macromechanism of the recovery of tin from cassiterite,” Kompleks. Ispolz. Mineral. Syr'ya, No. 4, 56–62 (2011). V. M. Chumarev, S. M. Kozhakhmetov, A. D. Vershinin, T. A. Kokoveshnikova, and A. N. Mansurova, “Study of the kinetics and macromechanism of the recovery of tin from cassiterite,” Kompleks. Ispolz. Mineral. Syr'ya, No. 4, 56–62 (2011).
18.
go back to reference A. N. Zelikman, B. G. Korshunov, A. V. Elyutin, and A. M. Zakharov, Niobium and Tantalum [in Russian], Metallurgiya, Moscow (1990). A. N. Zelikman, B. G. Korshunov, A. V. Elyutin, and A. M. Zakharov, Niobium and Tantalum [in Russian], Metallurgiya, Moscow (1990).
19.
go back to reference K. Ozturk, L.-Q. Chen, and Z.-K. Liu, “Thermodynamic assessment of the Al–Ca binary system using random solution and associate model,” J. Alloys Compound., 340, No. 1–2, 199–206 (2002). CrossRef K. Ozturk, L.-Q. Chen, and Z.-K. Liu, “Thermodynamic assessment of the Al–Ca binary system using random solution and associate model,” J. Alloys Compound., 340, No. 1–2, 199–206 (2002). CrossRef
20.
go back to reference Netzsch Proteus Software. Thermal Analysis. Version 4.8.3. Netzsch Proteus Software. Thermal Analysis. Version 4.8.3.
21.
go back to reference A. Roine, HSC Chemistry 6.0 User’s Guide. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation, OutotecResearchOy, Pori (2006). A. Roine, HSC Chemistry 6.0 User’s Guide. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation, OutotecResearchOy, Pori (2006).
22.
go back to reference DIFFRAC Plus : TOPAS Bruker AXS GmbH, Ostliche, Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany (2008). DIFFRAC Plus : TOPAS Bruker AXS GmbH, Ostliche, Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany (2008).
23.
go back to reference Powder Diffraction File PDF4 + ICDD Release 2016. Powder Diffraction File PDF4 + ICDD Release 2016.
24.
go back to reference T. S. Ercit, M. A. Wise, and P. Cerny, “Compositional and structural systematics of the columbite group,” Am. Mineral., 80, 613–619 (1995). CrossRef T. S. Ercit, M. A. Wise, and P. Cerny, “Compositional and structural systematics of the columbite group,” Am. Mineral., 80, 613–619 (1995). CrossRef
25.
go back to reference S. C. Tarantino and M. Zema, “Mixing and ordering behavior in manganocolumbite-ferrocolumbite solid solution: A singlecrystal X-ray diffraction study,” Am. Mineral., 90, 1291–1299 (2005). CrossRef S. C. Tarantino and M. Zema, “Mixing and ordering behavior in manganocolumbite-ferrocolumbite solid solution: A singlecrystal X-ray diffraction study,” Am. Mineral., 90, 1291–1299 (2005). CrossRef
26.
go back to reference A. N. Mansurova, R. I. Gulyaeva, V. M. Chumarev, and V. P. Mar’evich, “Thermochemical properties of MnNb 2O 6,” J. Therm. Anal. Calorim., 101, 45–47 (2010). CrossRef A. N. Mansurova, R. I. Gulyaeva, V. M. Chumarev, and V. P. Mar’evich, “Thermochemical properties of MnNb 2O 6,” J. Therm. Anal. Calorim., 101, 45–47 (2010). CrossRef
27.
go back to reference R. I. Gulyaeva, S. A. Petrova, V. M. Chumarev, and E. N. Selivanov, “High-temperature heat capacity and thermal expansion of the MnTa 2O 6,” J. Alloys Compound, 834, 155153 (2020). CrossRef R. I. Gulyaeva, S. A. Petrova, V. M. Chumarev, and E. N. Selivanov, “High-temperature heat capacity and thermal expansion of the MnTa 2O 6,” J. Alloys Compound, 834, 155153 (2020). CrossRef
28.
go back to reference Sh. Liu, B. Hallstedt, D. Music, and Y. Du, “Ab initio calculations and thermodynamic modeling for the Fe–Mn–Nb system,” CALPHAD: Comput. Coupl. Phase Diagrams Thermochem., 38, 43–58 (2012). Sh. Liu, B. Hallstedt, D. Music, and Y. Du, “Ab initio calculations and thermodynamic modeling for the Fe–Mn–Nb system,” CALPHAD: Comput. Coupl. Phase Diagrams Thermochem., 38, 43–58 (2012).
29.
go back to reference A. C. Turnock, “Mn–Ta oxides: phase relations at 1200°C,” J. Am. Ceram. Soc., 49, 382–384 (1966). CrossRef A. C. Turnock, “Mn–Ta oxides: phase relations at 1200°C,” J. Am. Ceram. Soc., 49, 382–384 (1966). CrossRef
30.
go back to reference S. Esmaeilzadeh, S. Lidin, M. Nygren, and J. Grins, “Single crystal refinement of the incommensurately modulated Mn 0.55Ta 0.45O 1.7, an oxygen deficient fluorite type compound,” Z. Org. Allg. Chem., 626, 148–159 (2000). CrossRef S. Esmaeilzadeh, S. Lidin, M. Nygren, and J. Grins, “Single crystal refinement of the incommensurately modulated Mn 0.55Ta 0.45O 1.7, an oxygen deficient fluorite type compound,” Z. Org. Allg. Chem., 626, 148–159 (2000). CrossRef
31.
go back to reference K. T. Jacob and A. Rajput, “Phase relations in the system Ca–Ta–O and thermodynamics of calcium tantalates in relation to calciothermic reduction of Ta 2O 5,” J. Alloys Compound, 620, 256–262 (2015). CrossRef K. T. Jacob and A. Rajput, “Phase relations in the system Ca–Ta–O and thermodynamics of calcium tantalates in relation to calciothermic reduction of Ta 2O 5,” J. Alloys Compound, 620, 256–262 (2015). CrossRef
Metadata
Title
Phase Transformation during Metallothermic Reduction of Tantalite
Authors
R. I. Gulyaeva
L. Yu. Udoeva
S. A. Petrova
S. V. Sergeeva
K. V. Pikulin
S. N. Agafonov
Publication date
02-07-2022
Publisher
Springer US
Published in
Metallurgist / Issue 1-2/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01316-z

Other articles of this Issue 1-2/2022

Metallurgist 1-2/2022 Go to the issue

Premium Partners