Skip to main content
Top
Published in:

30-10-2023

Phenomenological modeling of memristor fabricated by screen printing based on the structure of Ag/polymer/Cu

Authors: Mubeen Zafar, Muhammad Naeem Awais, Muhammad Naeem Shehzad, Aneeqa Masood, Abbas Javed, Aamir Razaq

Published in: Journal of Computational Electronics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The attributes of memristors such as their non-volatile nature, simple structure, no leakage current, and fast switching speed present enormous opportunities for various analog and digital applications. It is imperative to develop an accurate physical model of the memristor in order to design digital applications. Hitherto published memristor modeling approaches do not match the practical memristor dynamics. In this work, a new model is developed by considering Schottky contact at the metal–insulator–metal (MIM) interfaces, and a novel memristor is fabricated to validate the proposed model. A bead polymer based on methyl methacrylate and n-butyl methacrylate (MMBM) is first used to explore the resistive switching properties of the device. A cost-effective screen printing technique is demonstrated to deposit the resistive switching layer for the fabrication of the memristor. The resistive switching behavior is observed in the sandwiched layer with a silver (Ag) top electrode and copper (Cu) bottom electrode. The surface morphology and electrical characteristics of the fabricated device are investigated by scanning electron microscopy and two-point probe resistivity measurement. The results confirm the formation of the Schottky barriers at the MIM interfaces of the fabricated device. The proposed model is compared with the device described in this paper having an error of 0.7609 (in terms of the relative root-mean-square error). Moreover, a NOR logic gate is simulated for the circuit simulation of the proposed model. This will pave the way for new digital design applications based on the memristor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rosso, D.: Annual semiconductor sales increase 21.6 percent, top \$400 billion for first time. Semiconductor Industry Association (February, 2018) 1, (2018) Rosso, D.: Annual semiconductor sales increase 21.6 percent, top \$400 billion for first time. Semiconductor Industry Association (February, 2018) 1, (2018)
2.
go back to reference Hoddeson, L., Riordan, M.: The invention of the transistor and the birth of the information age (1998) Hoddeson, L., Riordan, M.: The invention of the transistor and the birth of the information age (1998)
3.
go back to reference Weste, N.H., Harris, D.: CMOS VLSI design: a circuits and systems perspective (Pearson Education India, 2015) Weste, N.H., Harris, D.: CMOS VLSI design: a circuits and systems perspective (Pearson Education India, 2015)
4.
go back to reference Singh, T., Rangarajan, S., John, D., Schreiber, R., Oliver, S., Seahra, R., Schaefer, A.: in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, 2020), pp. 42–44 Singh, T., Rangarajan, S., John, D., Schreiber, R., Oliver, S., Seahra, R., Schaefer, A.: in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, 2020), pp. 42–44
5.
go back to reference Rairigh, D.: Limits of cmos technology scaling and technologies beyond-cmos. Institute of Electrical and Electronics Engineers, Inc (2005) Rairigh, D.: Limits of cmos technology scaling and technologies beyond-cmos. Institute of Electrical and Electronics Engineers, Inc (2005)
6.
go back to reference Narendra, S.G., Chandrakasan, A.P.: Leakage in nanometer CMOS technologies (Springer Science & Business Media, 2006) Narendra, S.G., Chandrakasan, A.P.: Leakage in nanometer CMOS technologies (Springer Science & Business Media, 2006)
7.
go back to reference Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)CrossRef Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)CrossRef
8.
go back to reference Graves, C.E., Li, C., Sheng, X., Miller, D., Ignowski, J., Kiyama, L., Strachan, J.P.: In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 32(37), 2003437 (2020)CrossRef Graves, C.E., Li, C., Sheng, X., Miller, D., Ignowski, J., Kiyama, L., Strachan, J.P.: In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 32(37), 2003437 (2020)CrossRef
9.
go back to reference Im, I.H., Kim, S.J., Jang, H.W.: Memristive devices for new computing paradigms. Adv. Intell. Syst. 2(11), 2000105 (2020)CrossRef Im, I.H., Kim, S.J., Jang, H.W.: Memristive devices for new computing paradigms. Adv. Intell. Syst. 2(11), 2000105 (2020)CrossRef
10.
go back to reference Halawani, Y., Mohammad, B., Homouz, D., Al-Qutayri, M., Saleh, H.(2015): Modeling and optimization of memristor and stt-ram-based memory for low-power applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24(3):100314 Halawani, Y., Mohammad, B., Homouz, D., Al-Qutayri, M., Saleh, H.(2015): Modeling and optimization of memristor and stt-ram-based memory for low-power applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24(3):100314
11.
go back to reference Chua, L.: Memristor-the missing circuit element. IEEE Transactions on circuit theory 18(5), 507–519 (1971)CrossRef Chua, L.: Memristor-the missing circuit element. IEEE Transactions on circuit theory 18(5), 507–519 (1971)CrossRef
12.
go back to reference Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. nature 453(7191), 80–83 (2008) Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. nature 453(7191), 80–83 (2008)
13.
go back to reference Murali, S., Rajachidambaram, J.S., Han, S.Y., Chang, C.H., Herman, G.S., Conley, J.F., Jr.: Resistive switching in zinc-tin-oxide. Solid-state electronics 79, 248–252 (2013) Murali, S., Rajachidambaram, J.S., Han, S.Y., Chang, C.H., Herman, G.S., Conley, J.F., Jr.: Resistive switching in zinc-tin-oxide. Solid-state electronics 79, 248–252 (2013)
14.
go back to reference Thangamani, V.: Memristor-based resistive random access memory: hybrid architecture for low power compact memory design. Control Theory and Informatics 4(7), 7–14 (2014) Thangamani, V.: Memristor-based resistive random access memory: hybrid architecture for low power compact memory design. Control Theory and Informatics 4(7), 7–14 (2014)
15.
go back to reference Liang, Y., Lu, Z., Wang, G., Dong, Y., Yu, D., Iu, H.H.C.: Modeling simplification and dynamic behavior of n-shaped locally-active memristor based oscillator. IEEE Access 8, 75571–75585 (2020)CrossRef Liang, Y., Lu, Z., Wang, G., Dong, Y., Yu, D., Iu, H.H.C.: Modeling simplification and dynamic behavior of n-shaped locally-active memristor based oscillator. IEEE Access 8, 75571–75585 (2020)CrossRef
16.
go back to reference Gale, E.: in Advances in Unconventional Computing (Springer, 2017), pp. 497–542 Gale, E.: in Advances in Unconventional Computing (Springer, 2017), pp. 497–542
17.
go back to reference Zhang, T., Haider, M.R.: A schmitt trigger based oscillatory neural network for reservoir computing. Journal of Electrical and Electronic Engineering 8(1), 1–9 (2020) Zhang, T., Haider, M.R.: A schmitt trigger based oscillatory neural network for reservoir computing. Journal of Electrical and Electronic Engineering 8(1), 1–9 (2020)
18.
go back to reference Muthuswamy, B.: Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos 20(05), 1335–1350 (2010)CrossRefMATH Muthuswamy, B.: Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos 20(05), 1335–1350 (2010)CrossRefMATH
19.
go back to reference Yin, L., Cheng, R., Wang, Z., Wang,F., Sendeku, M.G., Wen, Y., Zhan, X., He, J.: Two-dimensional unipolar memristors with logic and memory functions. Nano Letters (2020) Yin, L., Cheng, R., Wang, Z., Wang,F., Sendeku, M.G., Wen, Y., Zhan, X., He, J.: Two-dimensional unipolar memristors with logic and memory functions. Nano Letters (2020)
20.
go back to reference Mazumder, P., Kang, S.M., Waser, R.: Memristors: devices, models, and applications. Proc. IEEE 100(6), 1911–1919 (2012)CrossRef Mazumder, P., Kang, S.M., Waser, R.: Memristors: devices, models, and applications. Proc. IEEE 100(6), 1911–1919 (2012)CrossRef
21.
go back to reference Yao, X., Liu, X., Zhong, S.: Exponential stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks with multiple delays. Neurocomputing (2020) Yao, X., Liu, X., Zhong, S.: Exponential stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks with multiple delays. Neurocomputing (2020)
22.
go back to reference Lu, L., Yang, X., Wang, W., Yu, Y.: Recursive second-order Volterra filter based on Dawson function for chaotic memristor system identification. Nonlinear Dynamics pp. 1–20 (2020) Lu, L., Yang, X., Wang, W., Yu, Y.: Recursive second-order Volterra filter based on Dawson function for chaotic memristor system identification. Nonlinear Dynamics pp. 1–20 (2020)
23.
go back to reference Mladenov, V., Kirilov, S.: A nonlinear drift memristor model with a modified biolek window function and activation threshold. Electronics 6(4), 77 (2017)CrossRef Mladenov, V., Kirilov, S.: A nonlinear drift memristor model with a modified biolek window function and activation threshold. Electronics 6(4), 77 (2017)CrossRef
24.
go back to reference Rziga, F.O., Mbarek, K., Ghedira, S., Besbes, K.: An efficient verilog-a memristor model implementation: simulation and application. J. Comput. Electron. 18(3), 1055–1064 (2019)CrossRef Rziga, F.O., Mbarek, K., Ghedira, S., Besbes, K.: An efficient verilog-a memristor model implementation: simulation and application. J. Comput. Electron. 18(3), 1055–1064 (2019)CrossRef
25.
go back to reference Zhang, X., Long, K.: Improved learning experience memristor model and application as neural network synapse. IEEE Access 7, 15262–15271 (2019)CrossRef Zhang, X., Long, K.: Improved learning experience memristor model and application as neural network synapse. IEEE Access 7, 15262–15271 (2019)CrossRef
26.
go back to reference Ascoli, A., Corinto, F., Senger, V., Tetzlaff, R.: Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)CrossRef Ascoli, A., Corinto, F., Senger, V., Tetzlaff, R.: Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)CrossRef
27.
go back to reference Isah, A., Nguetcho, A.S.T., Binczak, S., Bilbault, J.M.: Comparison of the performance of the memristor models in 2d cellular nonlinear network. Electronics 10(13), 1577 (2021)CrossRef Isah, A., Nguetcho, A.S.T., Binczak, S., Bilbault, J.M.: Comparison of the performance of the memristor models in 2d cellular nonlinear network. Electronics 10(13), 1577 (2021)CrossRef
28.
go back to reference Gao, L., Ren, Q., Sun, J., Han, S.T., Zhou, Y.: Memristor modeling: Challenges in theories, simulations, and device variability. J. Mater. Chem. C 9(47), 16859–84 (2021)CrossRef Gao, L., Ren, Q., Sun, J., Han, S.T., Zhou, Y.: Memristor modeling: Challenges in theories, simulations, and device variability. J. Mater. Chem. C 9(47), 16859–84 (2021)CrossRef
29.
go back to reference Duan, W.: All inorganic and transparent ito/boehmite/ito structure by one-step synthesis method for flexible memristor. Solid-State Electron. 186, 108180 (2021)CrossRef Duan, W.: All inorganic and transparent ito/boehmite/ito structure by one-step synthesis method for flexible memristor. Solid-State Electron. 186, 108180 (2021)CrossRef
30.
go back to reference Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015)CrossRef Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015)CrossRef
31.
go back to reference Yan, K., Peng, M., Yu, X., Cai, X., Chen, S., Hu, H., Chen, B., Gao, X., Dong, B., Zou, D.: High-performance perovskite memristor based on methyl ammonium lead halides. J. Mater. Chem. C 4(7), 1375–1381 (2016)CrossRef Yan, K., Peng, M., Yu, X., Cai, X., Chen, S., Hu, H., Chen, B., Gao, X., Dong, B., Zou, D.: High-performance perovskite memristor based on methyl ammonium lead halides. J. Mater. Chem. C 4(7), 1375–1381 (2016)CrossRef
32.
go back to reference Awais, M.N., Muhammad, N.M., Navaneethan, D., Kim, H.C., Jo, J., Choi, K.H.: Fabrication of zro2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor). Microelectron. Eng. 103, 167–172 (2013)CrossRef Awais, M.N., Muhammad, N.M., Navaneethan, D., Kim, H.C., Jo, J., Choi, K.H.: Fabrication of zro2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor). Microelectron. Eng. 103, 167–172 (2013)CrossRef
33.
go back to reference Awais, M.N., Choi, K.H.: Resistive switching and current conduction mechanism in full organic resistive switch with the sandwiched structure of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate)/poly (4-vinylphenol)/poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate). Electron. Mater. Lett. 10(3), 601–606 (2014)CrossRef Awais, M.N., Choi, K.H.: Resistive switching and current conduction mechanism in full organic resistive switch with the sandwiched structure of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate)/poly (4-vinylphenol)/poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate). Electron. Mater. Lett. 10(3), 601–606 (2014)CrossRef
34.
go back to reference Zhao, X., Xu, H., Wang, Z., Lin, Y., Liu, Y.: Memristors with organic-inorganic halide perovskites. InfoMat 1(2), 183–210 (2019)CrossRef Zhao, X., Xu, H., Wang, Z., Lin, Y., Liu, Y.: Memristors with organic-inorganic halide perovskites. InfoMat 1(2), 183–210 (2019)CrossRef
35.
go back to reference Lupo, F., Scirè, D., Mosca, M., Crupi, I., Razzari, L., Macaluso, R.: Custom measurement system for memristor characterisation. Solid-State Electron. 186, 108049 (2021)CrossRef Lupo, F., Scirè, D., Mosca, M., Crupi, I., Razzari, L., Macaluso, R.: Custom measurement system for memristor characterisation. Solid-State Electron. 186, 108049 (2021)CrossRef
36.
go back to reference Kügeler, C., Meier, M., Rosezin, R., Gilles, S., Waser, R.: High density 3d memory architecture based on the resistive switching effect. Solid-State Electron. 53(12), 1287–1292 (2009)CrossRef Kügeler, C., Meier, M., Rosezin, R., Gilles, S., Waser, R.: High density 3d memory architecture based on the resistive switching effect. Solid-State Electron. 53(12), 1287–1292 (2009)CrossRef
37.
go back to reference Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron. Dev. 58(9), 3099–3105 (2011)CrossRef Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron. Dev. 58(9), 3099–3105 (2011)CrossRef
38.
go back to reference Biolek, Z., Biolek, D., Biolkova, V.: Spice model of memristor with nonlinear dopant drift. Radioengineering, 18(2) (2009) Biolek, Z., Biolek, D., Biolkova, V.: Spice model of memristor with nonlinear dopant drift. Radioengineering, 18(2) (2009)
39.
go back to reference Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)CrossRefMATH Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)CrossRefMATH
40.
go back to reference Lehtonen, E., Laiho, M.: In 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010) (IEEE, 2010), pp. 1–4 Lehtonen, E., Laiho, M.: In 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010) (IEEE, 2010), pp. 1–4
41.
go back to reference Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)CrossRef Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)CrossRef
42.
go back to reference Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: Team: Threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211–221 (2012)MathSciNetCrossRefMATH Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: Team: Threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211–221 (2012)MathSciNetCrossRefMATH
43.
go back to reference Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G.: in 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications (IEEE, 2012), pp. 1–6 Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G.: in 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications (IEEE, 2012), pp. 1–6
44.
go back to reference Muhammad, N.M., Duraisamy, N., Rahman, K., Dang, H.W., Jo, J., Choi, K.H.: Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13(1), 90–96 (2013)CrossRef Muhammad, N.M., Duraisamy, N., Rahman, K., Dang, H.W., Jo, J., Choi, K.H.: Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13(1), 90–96 (2013)CrossRef
45.
go back to reference Yang, J.J., Kobayashi, N.P., Strachan, J.P., Zhang, M.X., Ohlberg, D.A., Pickett, M.D., Li, Z., Medeiros-Ribeiro, G., Williams, R.S.: Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23(2), 123–125 (2011)CrossRef Yang, J.J., Kobayashi, N.P., Strachan, J.P., Zhang, M.X., Ohlberg, D.A., Pickett, M.D., Li, Z., Medeiros-Ribeiro, G., Williams, R.S.: Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23(2), 123–125 (2011)CrossRef
46.
go back to reference Kim, H., McIntyre, P.C., On Chui, C., Saraswat, K.C., Stemmer, S.: Engineering chemically abrupt high-k metal oxide/ silicon interfaces using an oxygen-gettering metal overlayer. J. Appl. Phys. 96(6), 3467–3472 (2004)CrossRef Kim, H., McIntyre, P.C., On Chui, C., Saraswat, K.C., Stemmer, S.: Engineering chemically abrupt high-k metal oxide/ silicon interfaces using an oxygen-gettering metal overlayer. J. Appl. Phys. 96(6), 3467–3472 (2004)CrossRef
47.
go back to reference Lin, C.Y., Wu, C.Y., Wu, C.Y., Hu, C., Tseng, T.Y.: Bistable resistive switching in al2o3 memory thin films. J. Electrochem. Soc. 154(9), G189 (2007)CrossRef Lin, C.Y., Wu, C.Y., Wu, C.Y., Hu, C., Tseng, T.Y.: Bistable resistive switching in al2o3 memory thin films. J. Electrochem. Soc. 154(9), G189 (2007)CrossRef
48.
go back to reference Yang, M.K., Park, J.W., Ko, T.K., Lee, J.K.: Bipolar resistive switching behavior in ti/mno2/pt structure for nonvolatile memory devices. Appl. Phys. Lett. 95(4), 042105 (2009)CrossRef Yang, M.K., Park, J.W., Ko, T.K., Lee, J.K.: Bipolar resistive switching behavior in ti/mno2/pt structure for nonvolatile memory devices. Appl. Phys. Lett. 95(4), 042105 (2009)CrossRef
49.
go back to reference Huang, C.H., Huang, J.S., Lin, S.M., Chang, W.Y., He, J.H., Chueh, Y.L.: Zno1-x nanorod arrays/zno thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1d1r application. ACS Nano 6(9), 8407–8414 (2012)CrossRef Huang, C.H., Huang, J.S., Lin, S.M., Chang, W.Y., He, J.H., Chueh, Y.L.: Zno1-x nanorod arrays/zno thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1d1r application. ACS Nano 6(9), 8407–8414 (2012)CrossRef
50.
go back to reference Schindler, C., Thermadam, S.C.P., Waser, R., Kozicki, M.N.: Bipolar and unipolar resistive switching in cu-doped \(sio_{2}\). IEEE Trans. Electron. Dev. 54(10), 2762–2768 (2007)CrossRef Schindler, C., Thermadam, S.C.P., Waser, R., Kozicki, M.N.: Bipolar and unipolar resistive switching in cu-doped \(sio_{2}\). IEEE Trans. Electron. Dev. 54(10), 2762–2768 (2007)CrossRef
Metadata
Title
Phenomenological modeling of memristor fabricated by screen printing based on the structure of Ag/polymer/Cu
Authors
Mubeen Zafar
Muhammad Naeem Awais
Muhammad Naeem Shehzad
Aneeqa Masood
Abbas Javed
Aamir Razaq
Publication date
30-10-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 6/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02104-x