Skip to main content
Top
Published in: Microsystem Technologies 3/2016

14-05-2015 | Technical Paper

Phononic band engineering for thermal conduction control and similarity with photonic band engineering

Author: Masahiro Nomura

Published in: Microsystem Technologies | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Asheghi M, Touzelbaev MN, Goodson KE, Leung YK, Wong SS (1998) Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Trans 120:31–36CrossRef Asheghi M, Touzelbaev MN, Goodson KE, Leung YK, Wong SS (1998) Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Trans 120:31–36CrossRef
go back to reference Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard WA III, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168CrossRef Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard WA III, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168CrossRef
go back to reference Dames C, Chen G (2005) Thermoelectrics Handbook: Macro to Nano. In: Rowe D (ed), Chapter 42. CRC Press Dames C, Chen G (2005) Thermoelectrics Handbook: Macro to Nano. In: Rowe D (ed), Chapter 42. CRC Press
go back to reference Dechaumphai E, Chen R (2012) Thermal transport in phononic crystals: the role of zone folding effect. J Appl Phys 111:073508CrossRef Dechaumphai E, Chen R (2012) Thermal transport in phononic crystals: the role of zone folding effect. J Appl Phys 111:073508CrossRef
go back to reference Dresselhaus MS, Dresselhaus G, Sun X, Zhang Z, Cronin SB, Koga T, Ying JY, Chen G (1999) The promise of low-dimensional thermoelectric materials. Microscale Thermophys Eng 3:89–100CrossRef Dresselhaus MS, Dresselhaus G, Sun X, Zhang Z, Cronin SB, Koga T, Ying JY, Chen G (1999) The promise of low-dimensional thermoelectric materials. Microscale Thermophys Eng 3:89–100CrossRef
go back to reference Hicks LD, Dresselhaus MS (1993) Effect of QW structures on the thermoelectric figure of merit. Phys Rev B 47:12727CrossRef Hicks LD, Dresselhaus MS (1993) Effect of QW structures on the thermoelectric figure of merit. Phys Rev B 47:12727CrossRef
go back to reference Hicks LD, Harman TC, Sun X, Dresselhaus MS (1996) Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 53:10493CrossRef Hicks LD, Harman TC, Sun X, Dresselhaus MS (1996) Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 53:10493CrossRef
go back to reference Li D, Wu Y, Kim P, Li S, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934CrossRef Li D, Wu Y, Kim P, Li S, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934CrossRef
go back to reference Maire J, Nomura M (2014) Reduced Thermal Conductivities of Si 1D periodic structure and Nanowires. Jpn J Appl Phys 53:06JE09CrossRef Maire J, Nomura M (2014) Reduced Thermal Conductivities of Si 1D periodic structure and Nanowires. Jpn J Appl Phys 53:06JE09CrossRef
go back to reference Nomura M, Iwamoto S, Kumagai N, Arakawa Y (2007) Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor. Phys Rev B 75:195313-1–195313-6 Nomura M, Iwamoto S, Kumagai N, Arakawa Y (2007) Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor. Phys Rev B 75:195313-1–195313-6
go back to reference Nomura M, Kumagai N, Iwamoto S, Ota Y, Arakawa Y (2010) Laser oscillation in a strongly coupled single quantum dot-nanocavity system. Nat Phys 6:279–283CrossRef Nomura M, Kumagai N, Iwamoto S, Ota Y, Arakawa Y (2010) Laser oscillation in a strongly coupled single quantum dot-nanocavity system. Nat Phys 6:279–283CrossRef
go back to reference Nomura M, Nakagawa J, Kage Y, Maire J, Moser D, Paul O (2015) Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures. Appl Phys Lett 106:143102CrossRef Nomura M, Nakagawa J, Kage Y, Maire J, Moser D, Paul O (2015) Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures. Appl Phys Lett 106:143102CrossRef
go back to reference Stranz A, Waag A, Peiner E (2013) High-temperature performance of stacked silicon nanowires for thermoelectric power generation. J Electron Mat 42(7):2233–2238CrossRef Stranz A, Waag A, Peiner E (2013) High-temperature performance of stacked silicon nanowires for thermoelectric power generation. J Electron Mat 42(7):2233–2238CrossRef
go back to reference Yu J-K, Mitrovic S, Tham D, Varghese J, Heath JR (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotech 5:718–721CrossRef Yu J-K, Mitrovic S, Tham D, Varghese J, Heath JR (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotech 5:718–721CrossRef
go back to reference Zen N, Puurtinen TA, Isotalo TJ, Chaudhuri S, Maasilta IJ (2014) Engineering thermal conductance using a two-dimensional phononic crystal. Nat Commun 5:1–9CrossRef Zen N, Puurtinen TA, Isotalo TJ, Chaudhuri S, Maasilta IJ (2014) Engineering thermal conductance using a two-dimensional phononic crystal. Nat Commun 5:1–9CrossRef
Metadata
Title
Phononic band engineering for thermal conduction control and similarity with photonic band engineering
Author
Masahiro Nomura
Publication date
14-05-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 3/2016
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2569-5

Other articles of this Issue 3/2016

Microsystem Technologies 3/2016 Go to the issue