Skip to main content
Top

2015 | OriginalPaper | Chapter

2. Photogeneration of Reactive Oxygen Species by SBO and Application in Waste-Water Treatment

Authors : Luciano Carlos, Daniel O. Mártire

Published in: Soluble Bio-based Substances Isolated From Urban Wastes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Soluble bio-based substances (SBO) extracted from urban bio-wastes have similar chemical properties to humic substances (HS) present in natural waters and soils. Therefore, SBO are also expected to have photochemical properties similar to HS. In this chapter, a summary of the photochemistry of HS is presented along with the recent advances related to the photogeneration of reactive species upon irradiation of aqueous solutions of SBO and some examples of pollutant degradation photo-induced by SBO.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: A project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environmental Issues, 11, 170–196.CrossRef Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: A project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environmental Issues, 11, 170–196.CrossRef
2.
go back to reference Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science and Technology, 39, 9009–9015.CrossRef Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science and Technology, 39, 9009–9015.CrossRef
3.
go back to reference Kelleher, B. P., & Simpson, A. J. (2006). Humic substances in soils: Are they really chemically distinct? Environmental Science and Technology, 40, 4605–4611.CrossRef Kelleher, B. P., & Simpson, A. J. (2006). Humic substances in soils: Are they really chemically distinct? Environmental Science and Technology, 40, 4605–4611.CrossRef
4.
go back to reference Quagliotto, P., Montoneri, E., Tambone, F., Adani, F., Gobetto, R., & Viscardi, G. (2006). Chemicals from wastes: Compost-derived humic acid-like matter as surfactant. Environmental Science and Technology, 40, 1686–1692.CrossRef Quagliotto, P., Montoneri, E., Tambone, F., Adani, F., Gobetto, R., & Viscardi, G. (2006). Chemicals from wastes: Compost-derived humic acid-like matter as surfactant. Environmental Science and Technology, 40, 1686–1692.CrossRef
5.
go back to reference Korshin, G. V., Li, C.-W., & Benjamin, M. M. (1997). Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 31, 1787–1795.CrossRef Korshin, G. V., Li, C.-W., & Benjamin, M. M. (1997). Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 31, 1787–1795.CrossRef
6.
go back to reference Senesi, N., Miano, T. M., Provenzano, M. R., & Brunetti, G. (1989). Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin. Science of the Total Environment, 81–82, 143–156.CrossRef Senesi, N., Miano, T. M., Provenzano, M. R., & Brunetti, G. (1989). Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin. Science of the Total Environment, 81–82, 143–156.CrossRef
7.
go back to reference Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107, 402–418.CrossRef Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107, 402–418.CrossRef
8.
go back to reference Chen, Y., Senesi, N., & Schnitzer, M. (1977). Information provided on humic substances by E4/E6 ratios1. Soil Science Society of America Journal, 41, 352–358.CrossRef Chen, Y., Senesi, N., & Schnitzer, M. (1977). Information provided on humic substances by E4/E6 ratios1. Soil Science Society of America Journal, 41, 352–358.CrossRef
9.
go back to reference Lguirati, A., Ait Baddi, G., El Mousadik, A., Gilard, V., Revel, J. C., & Hafidi, M. (2005). Analysis of humic acids from aerated and non-aerated urban landfill composts. International Biodeterioration and Biodegradation, 56, 8–16.CrossRef Lguirati, A., Ait Baddi, G., El Mousadik, A., Gilard, V., Revel, J. C., & Hafidi, M. (2005). Analysis of humic acids from aerated and non-aerated urban landfill composts. International Biodeterioration and Biodegradation, 56, 8–16.CrossRef
10.
go back to reference Ma, J., Del Vecchio, R., Golanoski, K. S., Boyle, E. S., & Blough, N. V. (2010). Optical properties of humic substances and CDOM: Effects of borohydride reduction. Environmental Science and Technology, 44, 5395–5402.CrossRef Ma, J., Del Vecchio, R., Golanoski, K. S., Boyle, E. S., & Blough, N. V. (2010). Optical properties of humic substances and CDOM: Effects of borohydride reduction. Environmental Science and Technology, 44, 5395–5402.CrossRef
11.
go back to reference Sharpless, C. M., & Blough, N. V. (2014). The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties. Environmental Science: Processes & Impacts, 16, 654–671. Sharpless, C. M., & Blough, N. V. (2014). The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties. Environmental Science: Processes & Impacts, 16, 654–671.
12.
go back to reference Thomas-Smith, T. E., & Blough, N. V. (2001). Photoproduction of hydrated electron from constituents of natural waters. Environmental Science and Technology, 35, 2721–2726.CrossRef Thomas-Smith, T. E., & Blough, N. V. (2001). Photoproduction of hydrated electron from constituents of natural waters. Environmental Science and Technology, 35, 2721–2726.CrossRef
13.
go back to reference Zepp, R. G., Braun, A. M., Hoigne, J., & Leenheer, J. A. (1987). Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environmental Science and Technology, 21, 485–490.CrossRef Zepp, R. G., Braun, A. M., Hoigne, J., & Leenheer, J. A. (1987). Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environmental Science and Technology, 21, 485–490.CrossRef
14.
go back to reference Wang, W., Zafiriou, O. C., Chan, Iu Y, Zepp, R. G., & Blough, N. V. (2007). Production of hydrated electrons from photoionization of dissolved organic matter in natural waters. Environmental Science and Technology, 41, 1601–1607.CrossRef Wang, W., Zafiriou, O. C., Chan, Iu Y, Zepp, R. G., & Blough, N. V. (2007). Production of hydrated electrons from photoionization of dissolved organic matter in natural waters. Environmental Science and Technology, 41, 1601–1607.CrossRef
15.
go back to reference Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2011). Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Research, 45, 6535–6544.CrossRef Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2011). Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Research, 45, 6535–6544.CrossRef
16.
go back to reference Bruccoleri, A., Pant, B. C., Sharma, D. K., & Langford, C. H. (1993). Evaluation of primary photoproduct quantum yields in fulvic acid. Environmental Science and Technology, 27, 889–894.CrossRef Bruccoleri, A., Pant, B. C., Sharma, D. K., & Langford, C. H. (1993). Evaluation of primary photoproduct quantum yields in fulvic acid. Environmental Science and Technology, 27, 889–894.CrossRef
17.
go back to reference Zepp, R. G., Schlotzhauer, P. F., & Sink, R. M. (1985). Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances. Environmental Science and Technology, 19, 74–81.CrossRef Zepp, R. G., Schlotzhauer, P. F., & Sink, R. M. (1985). Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances. Environmental Science and Technology, 19, 74–81.CrossRef
18.
go back to reference Paul, A., Hackbarth, S., Vogt, R. D., Röder, B., Burnison, B. K., & Steinberg, C. E. W. (2004). Photogeneration of singlet oxygen by humic substances: Comparison of humic substances of aquatic and terrestrial origin. Photochemical & Photobiological Sciences, 3, 273–280.CrossRef Paul, A., Hackbarth, S., Vogt, R. D., Röder, B., Burnison, B. K., & Steinberg, C. E. W. (2004). Photogeneration of singlet oxygen by humic substances: Comparison of humic substances of aquatic and terrestrial origin. Photochemical & Photobiological Sciences, 3, 273–280.CrossRef
19.
go back to reference Dalrymple, R. M., Carfagno, A. K., & Sharpless, C. M. (2010). Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environmental Science and Technology, 44, 5824–5829.CrossRef Dalrymple, R. M., Carfagno, A. K., & Sharpless, C. M. (2010). Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environmental Science and Technology, 44, 5824–5829.CrossRef
20.
go back to reference Garg, S., Rose, A. L., & Waite, T. D. (2011). Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochimica et Cosmochimica Acta, 75, 4310–4320.CrossRef Garg, S., Rose, A. L., & Waite, T. D. (2011). Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochimica et Cosmochimica Acta, 75, 4310–4320.CrossRef
21.
go back to reference Page, S. E., Arnold, W. A., & McNeill, K. (2011). Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environmental Science and Technology, 45, 2818–2825.CrossRef Page, S. E., Arnold, W. A., & McNeill, K. (2011). Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environmental Science and Technology, 45, 2818–2825.CrossRef
22.
go back to reference Page, S. E., Sander, M., Arnold, W. A., & McNeill, K. (2012). Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. Environmental Science and Technology, 46, 1590–1597.CrossRef Page, S. E., Sander, M., Arnold, W. A., & McNeill, K. (2012). Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. Environmental Science and Technology, 46, 1590–1597.CrossRef
23.
go back to reference Rosario-Ortiz, F. L., Mezyk, S. P., Doud, D. F. R., & Snyder, S. A. (2008). Quantitative correlation of absolute hydroxyl radical rate constants with non-isolated effluent organic matter bulk properties in water. Environmental Science and Technology, 42, 5924–5930.CrossRef Rosario-Ortiz, F. L., Mezyk, S. P., Doud, D. F. R., & Snyder, S. A. (2008). Quantitative correlation of absolute hydroxyl radical rate constants with non-isolated effluent organic matter bulk properties in water. Environmental Science and Technology, 42, 5924–5930.CrossRef
24.
go back to reference Miller, C. J., Rose, A. L., & Waite, T. D. (2012). Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee river fulvic acid under circumneutral freshwater conditions. Environmental Science and Technology, 47, 829–835.CrossRef Miller, C. J., Rose, A. L., & Waite, T. D. (2012). Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee river fulvic acid under circumneutral freshwater conditions. Environmental Science and Technology, 47, 829–835.CrossRef
25.
go back to reference Scully, N. M., Cooper, W. J., & Tranvik, L. J. (2003). Photochemical effects on microbial activity in natural waters: The interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiology Ecology, 46, 353–357.CrossRef Scully, N. M., Cooper, W. J., & Tranvik, L. J. (2003). Photochemical effects on microbial activity in natural waters: The interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiology Ecology, 46, 353–357.CrossRef
26.
go back to reference Bosio, G. N., David Gara, P. M., Einschlag, F. S., Gonzalez, M. C., Del Panno, M. T., & Martire, D. O. (2008). Photodegradation of soil organic matter and its effect on gram-negative bacterial growth. Photochemistry and Photobiology, 84, 1126–1132.CrossRef Bosio, G. N., David Gara, P. M., Einschlag, F. S., Gonzalez, M. C., Del Panno, M. T., & Martire, D. O. (2008). Photodegradation of soil organic matter and its effect on gram-negative bacterial growth. Photochemistry and Photobiology, 84, 1126–1132.CrossRef
27.
go back to reference Aguer, J. P., Richard, C., & Andreux, F. (1997). Comparison of the photoinductive properties of commercial, synthetic and soil-extracted humic substances. Journal of Photochemistry and Photobiology A: Chemistry, 103, 163–168.CrossRef Aguer, J. P., Richard, C., & Andreux, F. (1997). Comparison of the photoinductive properties of commercial, synthetic and soil-extracted humic substances. Journal of Photochemistry and Photobiology A: Chemistry, 103, 163–168.CrossRef
28.
go back to reference Halladja, S., ter Halle, A., Aguer, J.-P., Boulkamh, A., & Richard, C. (2007). Inhibition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states. Environmental Science and Technology, 41, 6066–6073.CrossRef Halladja, S., ter Halle, A., Aguer, J.-P., Boulkamh, A., & Richard, C. (2007). Inhibition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states. Environmental Science and Technology, 41, 6066–6073.CrossRef
29.
go back to reference Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., et al. (2011). Waste-derived bioorganic substances for light-induced generation of reactive oxygenated species. ChemSusChem, 4, 85–90.CrossRef Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., et al. (2011). Waste-derived bioorganic substances for light-induced generation of reactive oxygenated species. ChemSusChem, 4, 85–90.CrossRef
30.
go back to reference Avetta, P., Bianco, P. A., Fabbri, D., Montoneri, E., & Tomasso, L. (2012). Photodegradation of naphthalene sulfonic compounds in the presence of a bio-waste derived sensitizer. Chemical Engineering Journal, 197, 193–198.CrossRef Avetta, P., Bianco, P. A., Fabbri, D., Montoneri, E., & Tomasso, L. (2012). Photodegradation of naphthalene sulfonic compounds in the presence of a bio-waste derived sensitizer. Chemical Engineering Journal, 197, 193–198.CrossRef
31.
go back to reference Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209, 224–231.CrossRef Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209, 224–231.CrossRef
32.
go back to reference Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.CrossRef Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.CrossRef
33.
go back to reference Vione, D., Maurino, V., Minero, C., & Pelizzetti, E. (2001). Phenol photonitration upon UV irradiation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol. Chemosphere, 45, 893–902.CrossRef Vione, D., Maurino, V., Minero, C., & Pelizzetti, E. (2001). Phenol photonitration upon UV irradiation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol. Chemosphere, 45, 893–902.CrossRef
34.
go back to reference Avetta, P., Bella, F., Bianco, A. P., Laurenti, E., Montoneri, E., Arques, A., & Carlos, L. (2013). Waste cleaning waste: Photodegradation of monochlorophenols in the presence of waste-derived photosensitizer. ACS Sustainable Chemistry & Engineering, 1, 1545–1550.CrossRef Avetta, P., Bella, F., Bianco, A. P., Laurenti, E., Montoneri, E., Arques, A., & Carlos, L. (2013). Waste cleaning waste: Photodegradation of monochlorophenols in the presence of waste-derived photosensitizer. ACS Sustainable Chemistry & Engineering, 1, 1545–1550.CrossRef
35.
go back to reference Tratnyek, P. G., & Hoigne, J. (1991). Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen. Environmental Science and Technology, 25, 1596–1604.CrossRef Tratnyek, P. G., & Hoigne, J. (1991). Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen. Environmental Science and Technology, 25, 1596–1604.CrossRef
36.
go back to reference Carlos, L., Mártire, D. O., Gonzalez, M. C., Gomis, J., Bernabeu, A., Amat, A. M., & Arques, A. (2012). Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research, 46, 4732–4740.CrossRef Carlos, L., Mártire, D. O., Gonzalez, M. C., Gomis, J., Bernabeu, A., Amat, A. M., & Arques, A. (2012). Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research, 46, 4732–4740.CrossRef
37.
go back to reference Gomis, J., Bianco, A. P., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., et al. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236–243.CrossRef Gomis, J., Bianco, A. P., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., et al. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236–243.CrossRef
38.
go back to reference García Einschlag, F. S., Carlos, L., Capparelli, A. L., Braun, A. M., & Oliveros, E. (2002). Degradation of nitroaromatic compounds by the UV-H2O2 process using polychromatic radiation sources. Photochemical & Photobiological Sciences, 1, 520–525.CrossRef García Einschlag, F. S., Carlos, L., Capparelli, A. L., Braun, A. M., & Oliveros, E. (2002). Degradation of nitroaromatic compounds by the UV-H2O2 process using polychromatic radiation sources. Photochemical & Photobiological Sciences, 1, 520–525.CrossRef
Metadata
Title
Photogeneration of Reactive Oxygen Species by SBO and Application in Waste-Water Treatment
Authors
Luciano Carlos
Daniel O. Mártire
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-14744-4_2