Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Photon-Responsive Nanomaterials for Solar Cells

Authors : Vincent Tiing Tiong, Hongxia Wang

Published in: Responsive Nanomaterials for Sustainable Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The global issue of the utmost exhaustion of fossil fuels on earth has driven research towards the development of alternative energy resources to meet the increasing demand for energy required in modern society. Among the different types of renewable sources, solar energy is the largest energy source which is unlimited and clean. Currently solar cells or photovoltaic (PV) technologies that generate electricity by harnessing sunlight is one of the fastest growing power generation sources in the energy sector. In this chapter we review the application of nanomaterials in some types of solar cells including dye-sensitized solar cells, quantum dots solar cells and perovskite solar cells. Semiconductor materials such as TiO2, ZnOx, SnOx, NiOx etc have been widely used as electron or hole transport materials in these type of solar cells. The morphology, shape, size, crystal structure of particles of these materials can significantly influence the device performance. The outlook of the future research direction is provided at the end of the review.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.B. Michael Schmela, N. Chevillard, M.G. Paredes, M. Heisz, R. Rossi, M. Schmela, SolarPower Europe, China Photovoltaic Industry Association (CPIA), Dan Whitten & Justin Baca, US Solar Industries Association (SEIA), Japan Photovoltaic Energy Association (JPEA), Faruk Telemcioglu, Günder Turkish Solar Energy Society (GÜNDER), Steve Blume, Smart Energy Council; Rodrigo Lopes Sauaia & Stephanie betz, Brazilian Photovoltaic Solar Energy Association (AbSOLAR), Global Market Outlook 2018–2022, p. 81 (2018) A.B. Michael Schmela, N. Chevillard, M.G. Paredes, M. Heisz, R. Rossi, M. Schmela, SolarPower Europe, China Photovoltaic Industry Association (CPIA), Dan Whitten & Justin Baca, US Solar Industries Association (SEIA), Japan Photovoltaic Energy Association (JPEA), Faruk Telemcioglu, Günder Turkish Solar Energy Society (GÜNDER), Steve Blume, Smart Energy Council; Rodrigo Lopes Sauaia & Stephanie betz, Brazilian Photovoltaic Solar Energy Association (AbSOLAR), Global Market Outlook 2018–2022, p. 81 (2018)
2.
go back to reference M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 54). Prog. Photovolt. 27, 565–575 (2019)CrossRef M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 54). Prog. Photovolt. 27, 565–575 (2019)CrossRef
3.
go back to reference A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)CrossRef A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)CrossRef
4.
go back to reference H. Gerischer, M.E. Michel-Beyerle, F. Rebentrost, H. Tributsch, Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 13, 1509–1515 (1968)CrossRef H. Gerischer, M.E. Michel-Beyerle, F. Rebentrost, H. Tributsch, Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 13, 1509–1515 (1968)CrossRef
5.
go back to reference B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRef B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRef
6.
go back to reference K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51, 15894–15897 (2015)CrossRef K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51, 15894–15897 (2015)CrossRef
7.
go back to reference J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 46, 5975–6023 (2017)CrossRef J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 46, 5975–6023 (2017)CrossRef
8.
go back to reference A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)CrossRef A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)CrossRef
9.
go back to reference M.-E. Ragoussi, T. Torres, New generation solar cells: concepts, trends and perspectives. Chem. Commun. 51, 3957–3972 (2015)CrossRef M.-E. Ragoussi, T. Torres, New generation solar cells: concepts, trends and perspectives. Chem. Commun. 51, 3957–3972 (2015)CrossRef
10.
go back to reference A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)CrossRef A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)CrossRef
11.
go back to reference M.-E. Yeoh, K.-Y. Chan, Recent advances in photo-anode for dye-sensitized solar cells: a review. Int. J. Energy Res. 41, 2446–2467 (2017)CrossRef M.-E. Yeoh, K.-Y. Chan, Recent advances in photo-anode for dye-sensitized solar cells: a review. Int. J. Energy Res. 41, 2446–2467 (2017)CrossRef
12.
go back to reference D. Sengupta, P. Das, B. Mondal, K. Mukherjee, Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application—a review. Renew. Sustain. Energy Rev. 60, 356–376 (2016)CrossRef D. Sengupta, P. Das, B. Mondal, K. Mukherjee, Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application—a review. Renew. Sustain. Energy Rev. 60, 356–376 (2016)CrossRef
13.
go back to reference C.-J. Lin, W.-Y. Yu, S.-H. Chien, Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 1073–1077 (2010)CrossRef C.-J. Lin, W.-Y. Yu, S.-H. Chien, Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 1073–1077 (2010)CrossRef
14.
go back to reference M. Lv, D. Zheng, M. Ye, J. Xiao, W. Guo, Y. Lai, L. Sun, C. Lin, J. Zuo, Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy Environ. Sci. 6, 1615–1622 (2013)CrossRef M. Lv, D. Zheng, M. Ye, J. Xiao, W. Guo, Y. Lai, L. Sun, C. Lin, J. Zuo, Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy Environ. Sci. 6, 1615–1622 (2013)CrossRef
15.
go back to reference W.-Q. Wu, Y.-F. Xu, C.-Y. Su, D.-B. Kuang, Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy Environ. Sci. 7, 644–649 (2014)CrossRef W.-Q. Wu, Y.-F. Xu, C.-Y. Su, D.-B. Kuang, Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy Environ. Sci. 7, 644–649 (2014)CrossRef
16.
go back to reference D. Hwang, H. Lee, S.-Y. Jang, S.M. Jo, D. Kim, Y. Seo, D.Y. Kim, Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 2719–2725 (2011)CrossRef D. Hwang, H. Lee, S.-Y. Jang, S.M. Jo, D. Kim, Y. Seo, D.Y. Kim, Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 2719–2725 (2011)CrossRef
17.
go back to reference F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R.A. Caruso, M. Graetzel, Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4, 4420–4425 (2010)CrossRef F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R.A. Caruso, M. Graetzel, Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4, 4420–4425 (2010)CrossRef
18.
go back to reference S.H. Hwang, J. Yun, J. Jang, Multi-shell porous TiO2 hollow nanoparticles for enhanced light harvesting in dye-sensitized solar cells. Adv. Func. Mater. 24, 7619–7626 (2014)CrossRef S.H. Hwang, J. Yun, J. Jang, Multi-shell porous TiO2 hollow nanoparticles for enhanced light harvesting in dye-sensitized solar cells. Adv. Func. Mater. 24, 7619–7626 (2014)CrossRef
19.
go back to reference M. Saito, S. Fujihara, Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ. Sci. 1, 280–283 (2008)CrossRef M. Saito, S. Fujihara, Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ. Sci. 1, 280–283 (2008)CrossRef
20.
go back to reference N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 123, 12529–12533 (2011)CrossRef N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 123, 12529–12533 (2011)CrossRef
21.
go back to reference S. Ameen, M.S. Akhtar, Y.S. Kim, O.B. Yang, H.-S. Shin, Influence of seed layer treatment on low temperature grown ZnO nanotubes: performances in dye sensitized solar cells. Electrochim. Acta 56, 1111–1116 (2011)CrossRef S. Ameen, M.S. Akhtar, Y.S. Kim, O.B. Yang, H.-S. Shin, Influence of seed layer treatment on low temperature grown ZnO nanotubes: performances in dye sensitized solar cells. Electrochim. Acta 56, 1111–1116 (2011)CrossRef
22.
go back to reference A. Rang Arao, V. Dutta, Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles. Nanotechnology 19, 445712 (2008)CrossRef A. Rang Arao, V. Dutta, Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles. Nanotechnology 19, 445712 (2008)CrossRef
23.
go back to reference C. Xu, J. Wu, U.V. Desai, D. Gao, Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J. Am. Chem. Soc. 133, 8122–8125 (2011)CrossRef C. Xu, J. Wu, U.V. Desai, D. Gao, Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J. Am. Chem. Soc. 133, 8122–8125 (2011)CrossRef
24.
go back to reference Z. Dong, X. Lai, J.E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 24, 1046–1049 (2012)CrossRef Z. Dong, X. Lai, J.E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 24, 1046–1049 (2012)CrossRef
25.
go back to reference C.-Y. Lin, Y.-H. Lai, H.-W. Chen, J.-G. Chen, C.-W. Kung, R. Vittal, K.-C. Ho, Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy Environ. Sci. 4, 3448–3455 (2011)CrossRef C.-Y. Lin, Y.-H. Lai, H.-W. Chen, J.-G. Chen, C.-W. Kung, R. Vittal, K.-C. Ho, Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy Environ. Sci. 4, 3448–3455 (2011)CrossRef
26.
go back to reference X. Liu, J. Fang, Y. Liu, T.J.F.O.M.S. Lin, Progress in nanostructured photoanodes for dye-sensitized solar cells. Front. Mater. Sci. 10, 225–237 (2016)CrossRef X. Liu, J. Fang, Y. Liu, T.J.F.O.M.S. Lin, Progress in nanostructured photoanodes for dye-sensitized solar cells. Front. Mater. Sci. 10, 225–237 (2016)CrossRef
27.
go back to reference J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)CrossRef J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)CrossRef
28.
go back to reference N.G. Park, J. van de Lagemaat, A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 104, 8989–8994 (2000)CrossRef N.G. Park, J. van de Lagemaat, A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 104, 8989–8994 (2000)CrossRef
29.
go back to reference D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807–2824 (2006)CrossRef D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807–2824 (2006)CrossRef
30.
go back to reference K. Park, Q. Zhang, D. Myers, G. Cao, Charge transport properties in TiO2 network with different particle sizes for dye sensitized solar cells. ACS Appl. Mater. Interfaces 5, 1044–1052 (2013)CrossRef K. Park, Q. Zhang, D. Myers, G. Cao, Charge transport properties in TiO2 network with different particle sizes for dye sensitized solar cells. ACS Appl. Mater. Interfaces 5, 1044–1052 (2013)CrossRef
31.
go back to reference P. Tahay, M. Babapour Gol Afshani, A. Alavi, Z. Parsa, N. Safari, Interrelationship between TiO2 nanoparticle size and kind/size of dyes in the mechanism and conversion efficiency of dye sensitized solar cells. Phys. Chem. Chem. Phys. 19, 11187–11196 (2017)CrossRef P. Tahay, M. Babapour Gol Afshani, A. Alavi, Z. Parsa, N. Safari, Interrelationship between TiO2 nanoparticle size and kind/size of dyes in the mechanism and conversion efficiency of dye sensitized solar cells. Phys. Chem. Chem. Phys. 19, 11187–11196 (2017)CrossRef
32.
go back to reference W. Yang, J. Li, Y. Wang, F. Zhu, W. Shi, F. Wan, D. Xu, A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% 001 facets for dye-sensitized solar cells. Chem. Commun. 47, 1809–1811 (2011)CrossRef W. Yang, J. Li, Y. Wang, F. Zhu, W. Shi, F. Wan, D. Xu, A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% 001 facets for dye-sensitized solar cells. Chem. Commun. 47, 1809–1811 (2011)CrossRef
33.
go back to reference X. Wu, Z. Chen, G.Q. Lu, L. Wang, Nanosized anatase TiO2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells. Adv. Func. Mater. 21, 4167–4172 (2011)CrossRef X. Wu, Z. Chen, G.Q. Lu, L. Wang, Nanosized anatase TiO2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells. Adv. Func. Mater. 21, 4167–4172 (2011)CrossRef
34.
go back to reference D.K. Roh, W.S. Chi, H. Jeon, S.J. Kim, J.H. Kim, High efficiency solid-state dye-sensitized solar cells assembled with hierarchical anatase pine tree-like TiO2 nanotubes. Adv. Func. Mater. 24, 379–386 (2014)CrossRef D.K. Roh, W.S. Chi, H. Jeon, S.J. Kim, J.H. Kim, High efficiency solid-state dye-sensitized solar cells assembled with hierarchical anatase pine tree-like TiO2 nanotubes. Adv. Func. Mater. 24, 379–386 (2014)CrossRef
35.
go back to reference L.-L. Li, C.-Y. Tsai, H.-P. Wu, C.-C. Chen, E.W.-G. Diau, Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 2753–2758 (2010)CrossRef L.-L. Li, C.-Y. Tsai, H.-P. Wu, C.-C. Chen, E.W.-G. Diau, Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 2753–2758 (2010)CrossRef
36.
go back to reference S. Ito, N.-L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 38, 4004–4006 (2006)CrossRef S. Ito, N.-L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 38, 4004–4006 (2006)CrossRef
37.
go back to reference J. Zhang, Q. Li, S. Li, Y. Wang, C. Ye, P. Ruterana, H. Wang, An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells. J. Power Sources 268, 941–949 (2014)CrossRef J. Zhang, Q. Li, S. Li, Y. Wang, C. Ye, P. Ruterana, H. Wang, An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells. J. Power Sources 268, 941–949 (2014)CrossRef
38.
go back to reference A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2010)CrossRef A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2010)CrossRef
39.
go back to reference H.-Y. Chen, T.-L. Zhang, J. Fan, D.-B. Kuang, C.-Y. Su, Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 9205–9211 (2013)CrossRef H.-Y. Chen, T.-L. Zhang, J. Fan, D.-B. Kuang, C.-Y. Su, Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 9205–9211 (2013)CrossRef
40.
go back to reference K. Fan, J. Yu, W. Ho, Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Mater. Horiz. 4, 319–344 (2017)CrossRef K. Fan, J. Yu, W. Ho, Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Mater. Horiz. 4, 319–344 (2017)CrossRef
41.
go back to reference Y.-C. Park, Y.-J. Chang, B.-G. Kum, E.-H. Kong, J.Y. Son, Y.S. Kwon, T. Park, H.M. Jang, Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells. J. Mater. Chem. 21, 9582–9586 (2011)CrossRef Y.-C. Park, Y.-J. Chang, B.-G. Kum, E.-H. Kong, J.Y. Son, Y.S. Kwon, T. Park, H.M. Jang, Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells. J. Mater. Chem. 21, 9582–9586 (2011)CrossRef
42.
go back to reference S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242 (2014)CrossRef S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242 (2014)CrossRef
43.
go back to reference J. Yu, Q. Li, Z. Shu, Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance. Electrochim. Acta 56, 6293–6298 (2011)CrossRef J. Yu, Q. Li, Z. Shu, Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance. Electrochim. Acta 56, 6293–6298 (2011)CrossRef
44.
go back to reference K. Nakayama, T. Kubo, Y. Nishikitani, Electrophoretically deposited TiO2 nanotube light-scattering layers of dye-sensitized solar cells. Jpn. J. Appl. Phys. 47, 6610–6614 (2008)CrossRef K. Nakayama, T. Kubo, Y. Nishikitani, Electrophoretically deposited TiO2 nanotube light-scattering layers of dye-sensitized solar cells. Jpn. J. Appl. Phys. 47, 6610–6614 (2008)CrossRef
45.
go back to reference G. Wang, W. Xiao, J. Yu, High-efficiency dye-sensitized solar cells based on electrospun TiO2 multi-layered composite film photoanodes. Energy 86, 196–203 (2015)CrossRef G. Wang, W. Xiao, J. Yu, High-efficiency dye-sensitized solar cells based on electrospun TiO2 multi-layered composite film photoanodes. Energy 86, 196–203 (2015)CrossRef
46.
go back to reference L. Yang, W.W.-F. Leung, Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv. Mater. 23, 4559–4562 (2011)CrossRef L. Yang, W.W.-F. Leung, Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv. Mater. 23, 4559–4562 (2011)CrossRef
47.
go back to reference A.M. Bakhshayesh, M.R. Mohammadi, D.J. Fray, Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochim. Acta 78, 384–391 (2012)CrossRef A.M. Bakhshayesh, M.R. Mohammadi, D.J. Fray, Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochim. Acta 78, 384–391 (2012)CrossRef
48.
go back to reference W.-Q. Wu, Y.-F. Xu, H.-S. Rao, C.-Y. Su, D.-B. Kuang, Multistack Integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 136, 6437–6445 (2014)CrossRef W.-Q. Wu, Y.-F. Xu, H.-S. Rao, C.-Y. Su, D.-B. Kuang, Multistack Integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 136, 6437–6445 (2014)CrossRef
49.
go back to reference W. Song, Y. Gong, J. Tian, G. Cao, H. Zhao, C. Sun, Novel photoanode for dye-sensitized solar cells with enhanced light-harvesting and electron-collection efficiency. ACS Appl. Mater. Interfaces 8, 13418–13425 (2016)CrossRef W. Song, Y. Gong, J. Tian, G. Cao, H. Zhao, C. Sun, Novel photoanode for dye-sensitized solar cells with enhanced light-harvesting and electron-collection efficiency. ACS Appl. Mater. Interfaces 8, 13418–13425 (2016)CrossRef
50.
go back to reference Z. Dong, H. Ren, C.M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, D. Wang, Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 26, 905–909 (2014)CrossRef Z. Dong, H. Ren, C.M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, D. Wang, Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 26, 905–909 (2014)CrossRef
51.
go back to reference J.M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, H. Míguez, Efficient bifacial dye-sensitized solar cells through disorder by design. J. Mater. Chem. A 4, 1953–1961 (2016)CrossRef J.M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, H. Míguez, Efficient bifacial dye-sensitized solar cells through disorder by design. J. Mater. Chem. A 4, 1953–1961 (2016)CrossRef
52.
go back to reference B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932–15938 (2006)CrossRef B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932–15938 (2006)CrossRef
53.
go back to reference W. Wang, H. Zhang, R. Wang, M. Feng, Y. Chen, Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells. Nanoscale 6, 2390–2396 (2014)CrossRef W. Wang, H. Zhang, R. Wang, M. Feng, Y. Chen, Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells. Nanoscale 6, 2390–2396 (2014)CrossRef
54.
go back to reference Q. Zhang, D. Myers, J. Lan, S.A. Jenekhe, G. Cao, Applications of light scattering in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14, 14982–14998 (2012)CrossRef Q. Zhang, D. Myers, J. Lan, S.A. Jenekhe, G. Cao, Applications of light scattering in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14, 14982–14998 (2012)CrossRef
55.
go back to reference Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)CrossRef Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)CrossRef
56.
go back to reference C.C. Raj, R. Prasanth, A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 317, 120–132 (2016)CrossRef C.C. Raj, R. Prasanth, A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 317, 120–132 (2016)CrossRef
57.
go back to reference N. Sakai, R. Usui, T.N. Murakami, Optimum particle size of ZnO for dye-sensitized solar cells. Chem. Lett. 42, 810–812 (2013)CrossRef N. Sakai, R. Usui, T.N. Murakami, Optimum particle size of ZnO for dye-sensitized solar cells. Chem. Lett. 42, 810–812 (2013)CrossRef
58.
go back to reference J. Chang, R. Ahmed, H. Wang, H. Liu, R. Li, P. Wang, E.R. Waclawik, ZnO nanocones with high-index {\(10\bar{1}1\)} facets for enhanced energy conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. C 117, 13836–13844 (2013) J. Chang, R. Ahmed, H. Wang, H. Liu, R. Li, P. Wang, E.R. Waclawik, ZnO nanocones with high-index {\(10\bar{1}1\)} facets for enhanced energy conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. C 117, 13836–13844 (2013)
59.
go back to reference M.S. Akhtar, M.A. Khan, M.S. Jeon, O.B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta 53, 7869–7874 (2008)CrossRef M.S. Akhtar, M.A. Khan, M.S. Jeon, O.B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta 53, 7869–7874 (2008)CrossRef
60.
go back to reference M. McCune, W. Zhang, Y. Deng, High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Lett. 12, 3656–3662 (2012)CrossRef M. McCune, W. Zhang, Y. Deng, High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Lett. 12, 3656–3662 (2012)CrossRef
61.
go back to reference J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z.L. Wang, ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 21, 405203 (2010)CrossRef J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z.L. Wang, ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 21, 405203 (2010)CrossRef
62.
go back to reference D. Chu, Y. Masuda, T. Ohji, K. Kato, Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir 26, 2811–2815 (2010)CrossRef D. Chu, Y. Masuda, T. Ohji, K. Kato, Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir 26, 2811–2815 (2010)CrossRef
63.
go back to reference Q. Huang, L. Fang, X. Chen, M. Saleem, Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells. J. Alloy. Compd. 509, 9456–9459 (2011)CrossRef Q. Huang, L. Fang, X. Chen, M. Saleem, Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells. J. Alloy. Compd. 509, 9456–9459 (2011)CrossRef
64.
go back to reference S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011)CrossRef S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011)CrossRef
65.
go back to reference J. Fan, Y. Hao, C. Munuera, M. García-Hernández, F. Güell, E.M.J. Johansson, G. Boschloo, A. Hagfeldt, A. Cabot, Influence of the annealing atmosphere on the performance of ZnO nanowire dye-sensitized solar cells. J. Phys. Chem. C 117, 16349–16356 (2013)CrossRef J. Fan, Y. Hao, C. Munuera, M. García-Hernández, F. Güell, E.M.J. Johansson, G. Boschloo, A. Hagfeldt, A. Cabot, Influence of the annealing atmosphere on the performance of ZnO nanowire dye-sensitized solar cells. J. Phys. Chem. C 117, 16349–16356 (2013)CrossRef
66.
go back to reference D. Barpuzary, A.S. Patra, J.V. Vaghasiya, B.G. Solanki, S.S. Soni, M. Qureshi, Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D−π−A-type, carbazole derivative with more than 5% power conversion. ACS Appl. Mater. Interfaces 6, 12629–12639 (2014)CrossRef D. Barpuzary, A.S. Patra, J.V. Vaghasiya, B.G. Solanki, S.S. Soni, M. Qureshi, Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D−π−A-type, carbazole derivative with more than 5% power conversion. ACS Appl. Mater. Interfaces 6, 12629–12639 (2014)CrossRef
67.
go back to reference M. Navaneethan, J. Archana, M. Arivanandhan, Y. Hayakawa, Functional properties of amine-passivated ZnO nanostructures and dye-sensitized solar cell characteristics. Chem. Eng. J. 213, 70–77 (2012)CrossRef M. Navaneethan, J. Archana, M. Arivanandhan, Y. Hayakawa, Functional properties of amine-passivated ZnO nanostructures and dye-sensitized solar cell characteristics. Chem. Eng. J. 213, 70–77 (2012)CrossRef
68.
go back to reference C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (2007)CrossRef C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (2007)CrossRef
69.
go back to reference W.-C. Chang, L.-Y. Lin, W.-C. Yu, Bifunctional zinc oxide nanoburger aggregates as the dye-adsorption and light-scattering layer for dye-sensitized solar cells. Electrochim. Acta 169, 456–461 (2015)CrossRef W.-C. Chang, L.-Y. Lin, W.-C. Yu, Bifunctional zinc oxide nanoburger aggregates as the dye-adsorption and light-scattering layer for dye-sensitized solar cells. Electrochim. Acta 169, 456–461 (2015)CrossRef
70.
go back to reference Y. Shi, C. Zhu, L. Wang, W. Li, K.K. Fung, N. Wang, Asymmetric ZnO panel-like hierarchical architectures with highly interconnected pathways for free-electron transport and photovoltaic improvements. Chem. Eur. J. 19, 282–287 (2013)CrossRef Y. Shi, C. Zhu, L. Wang, W. Li, K.K. Fung, N. Wang, Asymmetric ZnO panel-like hierarchical architectures with highly interconnected pathways for free-electron transport and photovoltaic improvements. Chem. Eur. J. 19, 282–287 (2013)CrossRef
71.
go back to reference Y.-Z. Zheng, H. Ding, Y. Liu, X. Tao, G. Cao, J.-F. Chen, In situ hydrothermal growth of hierarchical ZnO nanourchin for high-efficiency dye-sensitized solar cells. J. Power Sources 254, 153–160 (2014)CrossRef Y.-Z. Zheng, H. Ding, Y. Liu, X. Tao, G. Cao, J.-F. Chen, In situ hydrothermal growth of hierarchical ZnO nanourchin for high-efficiency dye-sensitized solar cells. J. Power Sources 254, 153–160 (2014)CrossRef
72.
go back to reference A. Sacco, A. Lamberti, R. Gazia, S. Bianco, D. Manfredi, N. Shahzad, F. Cappelluti, S. Ma, E. Tresso, High efficiency dye-sensitized solar cells exploiting sponge-like ZnO nanostructures. Phys. Chem. Chem. Phys. 14, 16203–16208 (2012)CrossRef A. Sacco, A. Lamberti, R. Gazia, S. Bianco, D. Manfredi, N. Shahzad, F. Cappelluti, S. Ma, E. Tresso, High efficiency dye-sensitized solar cells exploiting sponge-like ZnO nanostructures. Phys. Chem. Chem. Phys. 14, 16203–16208 (2012)CrossRef
73.
go back to reference Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv. Func. Mater. 18, 1654–1660 (2008)CrossRef Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv. Func. Mater. 18, 1654–1660 (2008)CrossRef
74.
go back to reference D. Wu, Z. Gao, F. Xu, J. Chang, W. Tao, J. He, S. Gao, K. Jiang, Hierarchical ZnO aggregates assembled by orderly aligned nanorods for dye-sensitized solar cells. CrystEngComm 15, 1210–1217 (2013)CrossRef D. Wu, Z. Gao, F. Xu, J. Chang, W. Tao, J. He, S. Gao, K. Jiang, Hierarchical ZnO aggregates assembled by orderly aligned nanorods for dye-sensitized solar cells. CrystEngComm 15, 1210–1217 (2013)CrossRef
75.
go back to reference C.-W. Kung, H.-W. Chen, C.-Y. Lin, Y.-H. Lai, R. Vittal, K.-C. Ho, Electrochemical synthesis of a double-layer film of ZnO nanosheets/nanoparticles and its application for dye-sensitized solar cells. Prog. Photovolt. 22, 440–451 (2014)CrossRef C.-W. Kung, H.-W. Chen, C.-Y. Lin, Y.-H. Lai, R. Vittal, K.-C. Ho, Electrochemical synthesis of a double-layer film of ZnO nanosheets/nanoparticles and its application for dye-sensitized solar cells. Prog. Photovolt. 22, 440–451 (2014)CrossRef
76.
go back to reference J. Xu, K. Fan, W. Shi, K. Li, T. Peng, Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency. Sol. Energy 101, 150–159 (2014)CrossRef J. Xu, K. Fan, W. Shi, K. Li, T. Peng, Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency. Sol. Energy 101, 150–159 (2014)CrossRef
77.
go back to reference H. Wang, B. Li, J. Gao, M. Tang, H. Feng, J. Li, L. Guo, SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm 14, 5177–5181 (2012)CrossRef H. Wang, B. Li, J. Gao, M. Tang, H. Feng, J. Li, L. Guo, SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm 14, 5177–5181 (2012)CrossRef
78.
go back to reference Asdim, K. Manseki, T. Sugiura, T. Yoshida, Microwave synthesis of size-controllable SnO2 nanocrystals for dye-sensitized solar cells. New J. Chem. 38, 598–603 (2014)CrossRef Asdim, K. Manseki, T. Sugiura, T. Yoshida, Microwave synthesis of size-controllable SnO2 nanocrystals for dye-sensitized solar cells. New J. Chem. 38, 598–603 (2014)CrossRef
79.
go back to reference A. Le Viet, R. Jose, M.V. Reddy, B.V.R. Chowdari, S. Ramakrishna, Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. J. Phys. Chem. C 114, 21795–21800 (2010)CrossRef A. Le Viet, R. Jose, M.V. Reddy, B.V.R. Chowdari, S. Ramakrishna, Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. J. Phys. Chem. C 114, 21795–21800 (2010)CrossRef
80.
go back to reference X. Jin, C. Liu, J. Xu, Q. Wang, D. Chen, Size-controlled synthesis of mesoporous Nb2O5 microspheres for dye sensitized solar cells. RSC Adv. 4, 35546–35553 (2014)CrossRef X. Jin, C. Liu, J. Xu, Q. Wang, D. Chen, Size-controlled synthesis of mesoporous Nb2O5 microspheres for dye sensitized solar cells. RSC Adv. 4, 35546–35553 (2014)CrossRef
81.
go back to reference H. Niu, S. Zhang, Q. Ma, S. Qin, L. Wan, J. Xu, S. Miao, Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide–polyaniline composite as a counter electrode. RSC Adv. 3, 17228–17235 (2013)CrossRef H. Niu, S. Zhang, Q. Ma, S. Qin, L. Wan, J. Xu, S. Miao, Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide–polyaniline composite as a counter electrode. RSC Adv. 3, 17228–17235 (2013)CrossRef
82.
go back to reference I. Hod, M. Shalom, Z. Tachan, S. Rühle, A. Zaban, SrTiO3 recombination-inhibiting barrier layer for type II dye-sensitized solar cells. J. Phys. Chem. C 114, 10015–10018 (2010)CrossRef I. Hod, M. Shalom, Z. Tachan, S. Rühle, A. Zaban, SrTiO3 recombination-inhibiting barrier layer for type II dye-sensitized solar cells. J. Phys. Chem. C 114, 10015–10018 (2010)CrossRef
83.
go back to reference B. Tan, E. Toman, Y. Li, Y. Wu, Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J. Am. Chem. Soc. 129, 4162–4163 (2007)CrossRef B. Tan, E. Toman, Y. Li, Y. Wu, Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J. Am. Chem. Soc. 129, 4162–4163 (2007)CrossRef
84.
go back to reference D. Hwang, J.-S. Jin, H. Lee, H.-J. Kim, H. Chung, D.Y. Kim, S.-Y. Jang, D. Kim, Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci. Rep. 4, 7353 (2014)CrossRef D. Hwang, J.-S. Jin, H. Lee, H.-J. Kim, H. Chung, D.Y. Kim, S.-Y. Jang, D. Kim, Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci. Rep. 4, 7353 (2014)CrossRef
85.
go back to reference P. Reiss, M. Protière, L. Li, Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009)CrossRef P. Reiss, M. Protière, L. Li, Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009)CrossRef
86.
go back to reference N.R.E. Laboratory, Best Research-Cell Efficiency Chart (2019) N.R.E. Laboratory, Best Research-Cell Efficiency Chart (2019)
87.
go back to reference M.R. Kim, D. Ma, Quantum-dot-based solar cells: recent advances, strategies, and challenges. J. Phys. Chem. Lett. 6, 85–99 (2015)CrossRef M.R. Kim, D. Ma, Quantum-dot-based solar cells: recent advances, strategies, and challenges. J. Phys. Chem. Lett. 6, 85–99 (2015)CrossRef
88.
go back to reference Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095–10130 (2014)CrossRef Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095–10130 (2014)CrossRef
89.
go back to reference W. Wang, W. Feng, J. Du, W. Xue, L. Zhang, L. Zhao, Y. Li, X. Zhong, Cosensitized quantum dot solar cells with conversion efficiency over 12%. Adv. Mater. 30, 1705746 (2018)CrossRef W. Wang, W. Feng, J. Du, W. Xue, L. Zhang, L. Zhao, Y. Li, X. Zhong, Cosensitized quantum dot solar cells with conversion efficiency over 12%. Adv. Mater. 30, 1705746 (2018)CrossRef
90.
go back to reference Q. Zhang, G. Chen, Y. Yang, X. Shen, Y. Zhang, C. Li, R. Yu, Y. Luo, D. Li, Q. Meng, Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates. Phys. Chem. Chem. Phys. 14, 6479–6486 (2012)CrossRef Q. Zhang, G. Chen, Y. Yang, X. Shen, Y. Zhang, C. Li, R. Yu, Y. Luo, D. Li, Q. Meng, Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates. Phys. Chem. Chem. Phys. 14, 6479–6486 (2012)CrossRef
91.
go back to reference W. Zhang, X. Zeng, H. Wang, R. Fang, Y. Xu, Y. Zhang, W. Chen, High-yield synthesis of “oriented attachment” TiO2 nanorods as superior building blocks of photoanodes in quantum dot sensitized solar cells. RSC Adv. 6, 33713–33722 (2016)CrossRef W. Zhang, X. Zeng, H. Wang, R. Fang, Y. Xu, Y. Zhang, W. Chen, High-yield synthesis of “oriented attachment” TiO2 nanorods as superior building blocks of photoanodes in quantum dot sensitized solar cells. RSC Adv. 6, 33713–33722 (2016)CrossRef
92.
go back to reference H.-S. Rao, W.-Q. Wu, Y. Liu, Y.-F. Xu, B.-X. Chen, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy 8, 1–8 (2014)CrossRef H.-S. Rao, W.-Q. Wu, Y. Liu, Y.-F. Xu, B.-X. Chen, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy 8, 1–8 (2014)CrossRef
93.
go back to reference H. Zhou, L. Li, D. Jiang, Y. Lu, K. Pan, Anatase TiO2 nanosheets with exposed highly reactive (001) facets as an efficient photoanode for quantum dot-sensitized solar cells. RSC Adv. 6, 67968–67975 (2016)CrossRef H. Zhou, L. Li, D. Jiang, Y. Lu, K. Pan, Anatase TiO2 nanosheets with exposed highly reactive (001) facets as an efficient photoanode for quantum dot-sensitized solar cells. RSC Adv. 6, 67968–67975 (2016)CrossRef
94.
go back to reference C. Li, L. Yang, J. Xiao, Y.-C. Wu, M. Søndergaard, Y. Luo, D. Li, Q. Meng, B.B. Iversen, ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 8710–8715 (2013)CrossRef C. Li, L. Yang, J. Xiao, Y.-C. Wu, M. Søndergaard, Y. Luo, D. Li, Q. Meng, B.B. Iversen, ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 8710–8715 (2013)CrossRef
95.
go back to reference D. Wu, X. Wang, K. Cao, Y. An, X. Song, N. Liu, F. Xu, Z. Gao, K. Jiang, ZnO nanorods with tunable aspect ratios deriving from oriented-attachment for enhanced performance in quantum-dot sensitized solar cells. Electrochim. Acta 231, 1–12 (2017)CrossRef D. Wu, X. Wang, K. Cao, Y. An, X. Song, N. Liu, F. Xu, Z. Gao, K. Jiang, ZnO nanorods with tunable aspect ratios deriving from oriented-attachment for enhanced performance in quantum-dot sensitized solar cells. Electrochim. Acta 231, 1–12 (2017)CrossRef
96.
go back to reference M. Seol, H. Kim, Y. Tak, K. Yong, Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chem. Commun. 46, 5521–5523 (2010)CrossRef M. Seol, H. Kim, Y. Tak, K. Yong, Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chem. Commun. 46, 5521–5523 (2010)CrossRef
97.
go back to reference J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V.A.L. Roy, W. Zhang, C.-S. Lee, Arrays of ZnO/ZnxCd1−xSe nanocables: band gap engineering and photovoltaic applications. Nano Lett. 11, 4138–4143 (2011)CrossRef J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V.A.L. Roy, W. Zhang, C.-S. Lee, Arrays of ZnO/ZnxCd1−xSe nanocables: band gap engineering and photovoltaic applications. Nano Lett. 11, 4138–4143 (2011)CrossRef
98.
go back to reference T.R. Chetia, M.S. Ansari, M. Qureshi, Ethyl cellulose and cetrimonium bromide assisted synthesis of mesoporous, hexagon shaped ZnO nanodisks with exposed ±{0001} polar facets for enhanced photovoltaic performance in quantum dot sensitized solar cells. ACS Appl. Mater. Interfaces 7, 13266–13279 (2015)CrossRef T.R. Chetia, M.S. Ansari, M. Qureshi, Ethyl cellulose and cetrimonium bromide assisted synthesis of mesoporous, hexagon shaped ZnO nanodisks with exposed ±{0001} polar facets for enhanced photovoltaic performance in quantum dot sensitized solar cells. ACS Appl. Mater. Interfaces 7, 13266–13279 (2015)CrossRef
99.
go back to reference K. Yan, L. Zhang, J. Qiu, Y. Qiu, Z. Zhu, J. Wang, S. Yang, A quasi-quantum well sensitized solar cell with accelerated charge separation and collection. J. Am. Chem. Soc. 135, 9531–9539 (2013)CrossRef K. Yan, L. Zhang, J. Qiu, Y. Qiu, Z. Zhu, J. Wang, S. Yang, A quasi-quantum well sensitized solar cell with accelerated charge separation and collection. J. Am. Chem. Soc. 135, 9531–9539 (2013)CrossRef
100.
go back to reference J. Tian, G. Cao, Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells. J. Phys. Chem. Lett. 6, 1859–1869 (2015)CrossRef J. Tian, G. Cao, Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells. J. Phys. Chem. Lett. 6, 1859–1869 (2015)CrossRef
101.
102.
go back to reference S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, X. Zhong, Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%. J. Phys. Chem. Lett. 8, 559–564 (2017)CrossRef S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, X. Zhong, Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%. J. Phys. Chem. Lett. 8, 559–564 (2017)CrossRef
103.
go back to reference J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.-J. Wan, Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138, 4201–4209 (2016)CrossRef J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.-J. Wan, Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138, 4201–4209 (2016)CrossRef
104.
go back to reference Z. Du, Z. Pan, F. Fabregat-Santiago, K. Zhao, D. Long, H. Zhang, Y. Zhao, X. Zhong, J.-S. Yu, J. Bisquert, Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%. J. Phys. Chem. Lett. 7, 3103–3111 (2016)CrossRef Z. Du, Z. Pan, F. Fabregat-Santiago, K. Zhao, D. Long, H. Zhang, Y. Zhao, X. Zhong, J.-S. Yu, J. Bisquert, Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%. J. Phys. Chem. Lett. 7, 3103–3111 (2016)CrossRef
105.
go back to reference L. Etgar, W. Zhang, S. Gabriel, S.G. Hickey, M.K. Nazeeruddin, A. Eychmüller, B. Liu, M. Grätzel, High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets. Adv. Mater. 24, 2202–2206 (2012)CrossRef L. Etgar, W. Zhang, S. Gabriel, S.G. Hickey, M.K. Nazeeruddin, A. Eychmüller, B. Liu, M. Grätzel, High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets. Adv. Mater. 24, 2202–2206 (2012)CrossRef
106.
go back to reference J. Jia, L. Mu, Y. Lin, X. Zhou, Rutile versus anatase for quantum dot sensitized solar cell. Electrochim. Acta 266, 103–109 (2018)CrossRef J. Jia, L. Mu, Y. Lin, X. Zhou, Rutile versus anatase for quantum dot sensitized solar cell. Electrochim. Acta 266, 103–109 (2018)CrossRef
107.
go back to reference A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRef A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRef
108.
go back to reference J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4, 387–395 (2010)CrossRef J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4, 387–395 (2010)CrossRef
109.
go back to reference H. Han, P. Sudhagar, T. Song, Y. Jeon, I. Mora-Seró, F. Fabregat-Santiago, J. Bisquert, Y.S. Kang, U. Paik, Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. Chem. Commun. 49, 2810–2812 (2013)CrossRef H. Han, P. Sudhagar, T. Song, Y. Jeon, I. Mora-Seró, F. Fabregat-Santiago, J. Bisquert, Y.S. Kang, U. Paik, Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. Chem. Commun. 49, 2810–2812 (2013)CrossRef
110.
go back to reference B. Liu, Y. Sun, X. Wang, L. Zhang, D. Wang, Z. Fu, Y. Lin, T. Xie, Branched hierarchical photoanode of anatase TiO2 nanotubes on rutile TiO2 nanorod arrays for efficient quantum dot-sensitized solar cells. J. Mater. Chem. A 3, 4445–4452 (2015)CrossRef B. Liu, Y. Sun, X. Wang, L. Zhang, D. Wang, Z. Fu, Y. Lin, T. Xie, Branched hierarchical photoanode of anatase TiO2 nanotubes on rutile TiO2 nanorod arrays for efficient quantum dot-sensitized solar cells. J. Mater. Chem. A 3, 4445–4452 (2015)CrossRef
111.
go back to reference L. Tao, Y. Xiong, H. Liu, W. Shen, High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale 6, 931–938 (2014)CrossRef L. Tao, Y. Xiong, H. Liu, W. Shen, High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale 6, 931–938 (2014)CrossRef
112.
go back to reference J. Zhang, C. Tang, J.H. Bang, CdS/TiO2–SrTiO3 heterostructure nanotube arrays for improved solar energy conversion efficiency. Electrochem. Commun. 12, 1124–1128 (2010)CrossRef J. Zhang, C. Tang, J.H. Bang, CdS/TiO2–SrTiO3 heterostructure nanotube arrays for improved solar energy conversion efficiency. Electrochem. Commun. 12, 1124–1128 (2010)CrossRef
113.
go back to reference C. Dong, X. Li, J. Qi, First-principles investigation on electronic properties of quantum dot-sensitized solar cells based on anatase TiO2 nanotubes. J. Phys. Chem. C 115, 20307–20315 (2011)CrossRef C. Dong, X. Li, J. Qi, First-principles investigation on electronic properties of quantum dot-sensitized solar cells based on anatase TiO2 nanotubes. J. Phys. Chem. C 115, 20307–20315 (2011)CrossRef
114.
go back to reference W. Lee, S.H. Kang, J.-Y. Kim, G.B. Kolekar, Y.-E. Sung, S.-H. Han, TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells. Nanotechnology 20, 335706 (2009)CrossRef W. Lee, S.H. Kang, J.-Y. Kim, G.B. Kolekar, Y.-E. Sung, S.-H. Han, TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells. Nanotechnology 20, 335706 (2009)CrossRef
115.
go back to reference H. Huang, L. Pan, C.K. Lim, H. Gong, J. Guo, M.S. Tse, O.K. Tan, Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Small 9, 3153–3160 (2013)CrossRef H. Huang, L. Pan, C.K. Lim, H. Gong, J. Guo, M.S. Tse, O.K. Tan, Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Small 9, 3153–3160 (2013)CrossRef
116.
go back to reference L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Enhanced photoelectrochemical performance of CdSe/Mn-CdS/TiO2 nanorod arrays solar cell. Appl. Surf. Sci. 309, 255–262 (2014)CrossRef L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Enhanced photoelectrochemical performance of CdSe/Mn-CdS/TiO2 nanorod arrays solar cell. Appl. Surf. Sci. 309, 255–262 (2014)CrossRef
117.
go back to reference Z. Zhang, C. Shi, J. Chen, G. Xiao, L. Li, Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Appl. Surf. Sci. 410, 8–13 (2017)CrossRef Z. Zhang, C. Shi, J. Chen, G. Xiao, L. Li, Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Appl. Surf. Sci. 410, 8–13 (2017)CrossRef
118.
go back to reference Y. Chen, Q. Tao, W. Fu, H. Yang, X. Zhou, S. Su, D. Ding, Y. Mu, X. Li, M. Li, Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays. Chem. Commun. 50, 9509–9512 (2014)CrossRef Y. Chen, Q. Tao, W. Fu, H. Yang, X. Zhou, S. Su, D. Ding, Y. Mu, X. Li, M. Li, Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays. Chem. Commun. 50, 9509–9512 (2014)CrossRef
119.
go back to reference C. Wang, Z. Jiang, L. Wei, Y. Chen, J. Jiao, M. Eastman, H. Liu, Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: a wet-chemical approach. Nano Energy 1, 440–447 (2012)CrossRef C. Wang, Z. Jiang, L. Wei, Y. Chen, J. Jiao, M. Eastman, H. Liu, Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: a wet-chemical approach. Nano Energy 1, 440–447 (2012)CrossRef
120.
go back to reference J. Wan, R. Liu, Y. Tong, S. Chen, Y. Hu, B. Wang, Y. Xu, H. Wang, Hydrothermal etching treatment to rutile TiO2 nanorod arrays for improving the efficiency of CdS-sensitized TiO2 solar cells. Nanoscale Res. Lett. 11, 12 (2016)CrossRef J. Wan, R. Liu, Y. Tong, S. Chen, Y. Hu, B. Wang, Y. Xu, H. Wang, Hydrothermal etching treatment to rutile TiO2 nanorod arrays for improving the efficiency of CdS-sensitized TiO2 solar cells. Nanoscale Res. Lett. 11, 12 (2016)CrossRef
121.
go back to reference L. Yu, X. Ren, Z. Yang, Y. Han, Z. Li, The preparation and assembly of CdSxSe1−x alloyed quantum dots on TiO2 nanowire arrays for quantum dot-sensitized solar cells. J. Mater. Sci.: Mater. Eelctron. 27, 7150–7160 (2016) L. Yu, X. Ren, Z. Yang, Y. Han, Z. Li, The preparation and assembly of CdSxSe1−x alloyed quantum dots on TiO2 nanowire arrays for quantum dot-sensitized solar cells. J. Mater. Sci.: Mater. Eelctron. 27, 7150–7160 (2016)
122.
go back to reference Y.-F. Xu, W.-Q. Wu, H.-S. Rao, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance. Nano Energy 11, 621–630 (2015)CrossRef Y.-F. Xu, W.-Q. Wu, H.-S. Rao, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance. Nano Energy 11, 621–630 (2015)CrossRef
123.
go back to reference Z. Peng, Y. Liu, Y. Zhao, K. Chen, Y. Cheng, W. Chen, Incorporation of the TiO2 nanowire arrays photoanode and Cu2S nanorod arrays counter electrode on the photovoltaic performance of quantum dot sensitized solar cells. Electrochim. Acta 135, 276–283 (2014)CrossRef Z. Peng, Y. Liu, Y. Zhao, K. Chen, Y. Cheng, W. Chen, Incorporation of the TiO2 nanowire arrays photoanode and Cu2S nanorod arrays counter electrode on the photovoltaic performance of quantum dot sensitized solar cells. Electrochim. Acta 135, 276–283 (2014)CrossRef
124.
go back to reference D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Func. Mater. 19, 805–811 (2009)CrossRef D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Func. Mater. 19, 805–811 (2009)CrossRef
125.
go back to reference H.-L. Feng, W.-Q. Wu, H.-S. Rao, L.-B. Li, D.-B. Kuang, C.-Y. Su, Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells. J. Mater. Chem. A 3, 14826–14832 (2015)CrossRef H.-L. Feng, W.-Q. Wu, H.-S. Rao, L.-B. Li, D.-B. Kuang, C.-Y. Su, Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells. J. Mater. Chem. A 3, 14826–14832 (2015)CrossRef
126.
go back to reference H. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, D. Golberg, Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 19102–19109 (2011)CrossRef H. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, D. Golberg, Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 19102–19109 (2011)CrossRef
127.
go back to reference R. Zhou, Q. Zhang, E. Uchaker, L. Yang, N. Yin, Y. Chen, M. Yin, G. Cao, Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells. Electrochim. Acta 135, 284–292 (2014)CrossRef R. Zhou, Q. Zhang, E. Uchaker, L. Yang, N. Yin, Y. Chen, M. Yin, G. Cao, Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells. Electrochim. Acta 135, 284–292 (2014)CrossRef
128.
go back to reference Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13, 4659–4667 (2011)CrossRef Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13, 4659–4667 (2011)CrossRef
129.
go back to reference X. Xu, G. Jiang, Q. Wan, J. Shi, G. Xu, L. Miao, Mesoporous titania hollow spheres applied as scattering layers in quantum dots sensitized solar cells. Mater. Chem. Phys. 136, 1060–1066 (2012)CrossRef X. Xu, G. Jiang, Q. Wan, J. Shi, G. Xu, L. Miao, Mesoporous titania hollow spheres applied as scattering layers in quantum dots sensitized solar cells. Mater. Chem. Phys. 136, 1060–1066 (2012)CrossRef
130.
go back to reference H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, W. Tang, Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells. J. Alloy. Compd. 560, 1–5 (2013)CrossRef H. Hu, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, W. Tang, Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells. J. Alloy. Compd. 560, 1–5 (2013)CrossRef
131.
go back to reference M. Marandi, E. Rahmani, F. Ahangarani Farahani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater. 46, 6769–6783 (2017)CrossRef M. Marandi, E. Rahmani, F. Ahangarani Farahani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater. 46, 6769–6783 (2017)CrossRef
132.
go back to reference J. Xu, Z. Chen, J.A. Zapien, C.-S. Lee, W. Zhang, Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. Adv. Mater. 26, 5337–5367 (2014)CrossRef J. Xu, Z. Chen, J.A. Zapien, C.-S. Lee, W. Zhang, Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. Adv. Mater. 26, 5337–5367 (2014)CrossRef
133.
go back to reference J. Tian, Q. Zhang, E. Uchaker, R. Gao, X. Qu, S. Zhang, G. Cao, Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy Environ. Sci. 6, 3542–3547 (2013)CrossRef J. Tian, Q. Zhang, E. Uchaker, R. Gao, X. Qu, S. Zhang, G. Cao, Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy Environ. Sci. 6, 3542–3547 (2013)CrossRef
134.
go back to reference F.S. Ghoreishi, V. Ahmadi, M. Samadpour, Improved performance of CdS/CdSe quantum dots sensitized solar cell by incorporation of ZnO nanoparticles/reduced graphene oxide nanocomposite as photoelectrode. J. Power Sources 271, 195–202 (2014)CrossRef F.S. Ghoreishi, V. Ahmadi, M. Samadpour, Improved performance of CdS/CdSe quantum dots sensitized solar cell by incorporation of ZnO nanoparticles/reduced graphene oxide nanocomposite as photoelectrode. J. Power Sources 271, 195–202 (2014)CrossRef
135.
go back to reference D. Karageorgopoulos, E. Stathatos, E. Vitoratos, Thin ZnO nanocrystalline films for efficient quasi-solid state electrolyte quantum dot sensitized solar cells. J. Power Sources 219, 9–15 (2012)CrossRef D. Karageorgopoulos, E. Stathatos, E. Vitoratos, Thin ZnO nanocrystalline films for efficient quasi-solid state electrolyte quantum dot sensitized solar cells. J. Power Sources 219, 9–15 (2012)CrossRef
136.
go back to reference J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, G. Cao, Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 1, 6770–6775 (2013)CrossRef J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, G. Cao, Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 1, 6770–6775 (2013)CrossRef
137.
go back to reference K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)CrossRef K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)CrossRef
138.
go back to reference M. Seol, E. Ramasamy, J. Lee, K. Yong, Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode. J. Phys. Chem. C 115, 22018–22024 (2011)CrossRef M. Seol, E. Ramasamy, J. Lee, K. Yong, Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode. J. Phys. Chem. C 115, 22018–22024 (2011)CrossRef
139.
go back to reference R. Zhang, Q.-P. Luo, H.-Y. Chen, X.-Y. Yu, D.-B. Kuang, C.-Y. Su, CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells. ChemPhysChem 13, 1435–1439 (2012)CrossRef R. Zhang, Q.-P. Luo, H.-Y. Chen, X.-Y. Yu, D.-B. Kuang, C.-Y. Su, CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells. ChemPhysChem 13, 1435–1439 (2012)CrossRef
140.
go back to reference H. Kim, H. Jeong, T.K. An, C.E. Park, K. Yong, Hybrid-type quantum-dot cosensitized zno nanowire solar cell with enhanced visible-light harvesting. ACS Appl. Mater. Interfaces 5, 268–275 (2013)CrossRef H. Kim, H. Jeong, T.K. An, C.E. Park, K. Yong, Hybrid-type quantum-dot cosensitized zno nanowire solar cell with enhanced visible-light harvesting. ACS Appl. Mater. Interfaces 5, 268–275 (2013)CrossRef
141.
go back to reference W. Lee, S. Kang, T. Hwang, K. Kim, H. Woo, B. Lee, J. Kim, J. Kim, B. Park, Facile conversion synthesis of densely-formed branched ZnO-nanowire arrays for quantum-dot-sensitized solar cells. Electrochim. Acta 167, 194–200 (2015)CrossRef W. Lee, S. Kang, T. Hwang, K. Kim, H. Woo, B. Lee, J. Kim, J. Kim, B. Park, Facile conversion synthesis of densely-formed branched ZnO-nanowire arrays for quantum-dot-sensitized solar cells. Electrochim. Acta 167, 194–200 (2015)CrossRef
142.
go back to reference J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, S.-T. Lee, W.-J. Zhang, C.-S. Lee, Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage. J. Mater. Chem. 22, 13374–13379 (2012)CrossRef J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, S.-T. Lee, W.-J. Zhang, C.-S. Lee, Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage. J. Mater. Chem. 22, 13374–13379 (2012)CrossRef
143.
go back to reference T.R. Chetia, D. Barpuzary, M. Qureshi, Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 16, 9625–9633 (2014)CrossRef T.R. Chetia, D. Barpuzary, M. Qureshi, Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 16, 9625–9633 (2014)CrossRef
144.
go back to reference J. Tian, L. Lv, X. Wang, C. Fei, X. Liu, Z. Zhao, Y. Wang, G. Cao, Microsphere light-scattering layer assembled by ZnO nanosheets for the construction of high efficiency (>5%) quantum dots sensitized solar cells. J. Phys. Chem. C 118, 16611–16617 (2014)CrossRef J. Tian, L. Lv, X. Wang, C. Fei, X. Liu, Z. Zhao, Y. Wang, G. Cao, Microsphere light-scattering layer assembled by ZnO nanosheets for the construction of high efficiency (>5%) quantum dots sensitized solar cells. J. Phys. Chem. C 118, 16611–16617 (2014)CrossRef
145.
go back to reference Z. Zhu, J. Qiu, K. Yan, S. Yang, Building high-efficiency CdS/CdSe-sensitized solar cells with a hierarchically branched double-layer architecture. ACS Appl. Mater. Interfaces 5, 4000–4005 (2013)CrossRef Z. Zhu, J. Qiu, K. Yan, S. Yang, Building high-efficiency CdS/CdSe-sensitized solar cells with a hierarchically branched double-layer architecture. ACS Appl. Mater. Interfaces 5, 4000–4005 (2013)CrossRef
146.
go back to reference L. Yu, Z. Li, Synthesis of ZnxCd1−xSe@ZnO hollow spheres in different sizes for quantum dots sensitized solar cells application. Nanomaterials (Basel) 9, 132 (2019)CrossRef L. Yu, Z. Li, Synthesis of ZnxCd1−xSe@ZnO hollow spheres in different sizes for quantum dots sensitized solar cells application. Nanomaterials (Basel) 9, 132 (2019)CrossRef
147.
go back to reference J. Xiao, Q. Huang, J. Xu, C. Li, G. Chen, Y. Luo, D. Li, Q. Meng, CdS/CdSe co-sensitized solar cells based on a new SnO2 photoanode with a three-dimensionally interconnected ordered porous structure. J. Phys. Chem. C 118, 4007–4015 (2014)CrossRef J. Xiao, Q. Huang, J. Xu, C. Li, G. Chen, Y. Luo, D. Li, Q. Meng, CdS/CdSe co-sensitized solar cells based on a new SnO2 photoanode with a three-dimensionally interconnected ordered porous structure. J. Phys. Chem. C 118, 4007–4015 (2014)CrossRef
148.
go back to reference S. Greenwald, S. Rühle, M. Shalom, S. Yahav, A. Zaban, Unpredicted electron injection in CdS/CdSe quantum dot sensitized ZrO2 solar cells. Phys. Chem. Chem. Phys. 13, 19302–19306 (2011)CrossRef S. Greenwald, S. Rühle, M. Shalom, S. Yahav, A. Zaban, Unpredicted electron injection in CdS/CdSe quantum dot sensitized ZrO2 solar cells. Phys. Chem. Chem. Phys. 13, 19302–19306 (2011)CrossRef
149.
go back to reference K. Meng, P.K. Surolia, K.R. Thampi, BaTiO3 photoelectrodes for CdS quantum dot sensitized solar cells. J. Mater. Chem. A 2, 10231–10238 (2014)CrossRef K. Meng, P.K. Surolia, K.R. Thampi, BaTiO3 photoelectrodes for CdS quantum dot sensitized solar cells. J. Mater. Chem. A 2, 10231–10238 (2014)CrossRef
150.
go back to reference A. Pimachev, U. Poudyal, V. Proshchenko, W. Wang, Y. Dahnovsky, Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 18, 26771–26776 (2016)CrossRef A. Pimachev, U. Poudyal, V. Proshchenko, W. Wang, Y. Dahnovsky, Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 18, 26771–26776 (2016)CrossRef
151.
go back to reference R. Mastria, A. Rizzo, Mastering heterostructured colloidal nanocrystal properties for light-emitting diodes and solar cells. J. Mater. Chem. C 4, 6430–6446 (2016)CrossRef R. Mastria, A. Rizzo, Mastering heterostructured colloidal nanocrystal properties for light-emitting diodes and solar cells. J. Mater. Chem. C 4, 6430–6446 (2016)CrossRef
152.
go back to reference H.J. Yun, T. Paik, B. Diroll, M.E. Edley, J.B. Baxter, C.B. Murray, Nanocrystal size-dependent efficiency of quantum dot sensitized solar cells in the strongly coupled CdSe nanocrystals/TiO2 system. ACS Appl. Mater. Interfaces 8, 14692–14700 (2016)CrossRef H.J. Yun, T. Paik, B. Diroll, M.E. Edley, J.B. Baxter, C.B. Murray, Nanocrystal size-dependent efficiency of quantum dot sensitized solar cells in the strongly coupled CdSe nanocrystals/TiO2 system. ACS Appl. Mater. Interfaces 8, 14692–14700 (2016)CrossRef
153.
go back to reference C. Xia, W. Wu, T. Yu, X. Xie, C. van Oversteeg, H.C. Gerritsen, C. de Mello Donega, Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano 12, 8350–8361 (2018)CrossRef C. Xia, W. Wu, T. Yu, X. Xie, C. van Oversteeg, H.C. Gerritsen, C. de Mello Donega, Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano 12, 8350–8361 (2018)CrossRef
154.
go back to reference A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2010)CrossRef A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2010)CrossRef
155.
go back to reference R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982)CrossRef R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982)CrossRef
156.
go back to reference R.D. Schaller, V.M. Agranovich, V.I. Klimov, High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat. Phys. 1, 189–194 (2005)CrossRef R.D. Schaller, V.M. Agranovich, V.I. Klimov, High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat. Phys. 1, 189–194 (2005)CrossRef
157.
go back to reference K. Tvrdy, P.A. Frantsuzov, P.V. Kamat, Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. 108, 29 (2011)CrossRef K. Tvrdy, P.A. Frantsuzov, P.V. Kamat, Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. 108, 29 (2011)CrossRef
158.
go back to reference Z. Peng, Y. Liu, W. Shu, K. Chen, W. Chen, Synthesis of various sized CuInS2 quantum dots and their photovoltaic properties as sensitizers for TiO2 photoanodes. Eur. J. Inorg. Chem. 2012, 5239–5244 (2012)CrossRef Z. Peng, Y. Liu, W. Shu, K. Chen, W. Chen, Synthesis of various sized CuInS2 quantum dots and their photovoltaic properties as sensitizers for TiO2 photoanodes. Eur. J. Inorg. Chem. 2012, 5239–5244 (2012)CrossRef
159.
go back to reference J. Yang, J.-Y. Kim, J.H. Yu, T.-Y. Ahn, H. Lee, T.-S. Choi, Y.-W. Kim, J. Joo, M.J. Ko, T. Hyeon, Copper–indium–selenide quantum dot-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 20517–20525 (2013)CrossRef J. Yang, J.-Y. Kim, J.H. Yu, T.-Y. Ahn, H. Lee, T.-S. Choi, Y.-W. Kim, J. Joo, M.J. Ko, T. Hyeon, Copper–indium–selenide quantum dot-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 20517–20525 (2013)CrossRef
160.
go back to reference D.H. Jara, S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem. Mater. 26, 7221–7228 (2014)CrossRef D.H. Jara, S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem. Mater. 26, 7221–7228 (2014)CrossRef
161.
162.
go back to reference L.-S. Li, J. Hu, W. Yang, A.P. Alivisatos, Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1, 349–351 (2001)CrossRef L.-S. Li, J. Hu, W. Yang, A.P. Alivisatos, Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1, 349–351 (2001)CrossRef
163.
go back to reference R.K. Chava, M. Kang, Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices. Mater. Lett. 199, 188–191 (2017)CrossRef R.K. Chava, M. Kang, Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices. Mater. Lett. 199, 188–191 (2017)CrossRef
164.
go back to reference P.N. Kumar, A. Kolay, M. Deepa, S.M. Shivaprasad, A.K. Srivastava, Stability, scale-up, and performance of quantum dot solar cells with carbonate-treated titanium oxide films. ACS Appl. Mater. Interfaces 9, 25278–25290 (2017)CrossRef P.N. Kumar, A. Kolay, M. Deepa, S.M. Shivaprasad, A.K. Srivastava, Stability, scale-up, and performance of quantum dot solar cells with carbonate-treated titanium oxide films. ACS Appl. Mater. Interfaces 9, 25278–25290 (2017)CrossRef
165.
go back to reference G. Jiang, Z. Pan, Z. Ren, J. Du, C. Yang, W. Wang, X. Zhong, Poly(vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. J. Mater. Chem. A 4, 11416–11421 (2016)CrossRef G. Jiang, Z. Pan, Z. Ren, J. Du, C. Yang, W. Wang, X. Zhong, Poly(vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. J. Mater. Chem. A 4, 11416–11421 (2016)CrossRef
166.
go back to reference J. Yang, X. Zhong, CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media. J. Mater. Chem. A 4, 16553–16561 (2016)CrossRef J. Yang, X. Zhong, CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media. J. Mater. Chem. A 4, 16553–16561 (2016)CrossRef
167.
go back to reference J. Duan, Q. Tang, B. He, L. Yu, Efficient In2S3 quantum dot–sensitized solar cells: a promising power conversion efficiency of 13.0%. Electrochim. Acta 139, 381–385 (2014)CrossRef J. Duan, Q. Tang, B. He, L. Yu, Efficient In2S3 quantum dot–sensitized solar cells: a promising power conversion efficiency of 13.0%. Electrochim. Acta 139, 381–385 (2014)CrossRef
168.
go back to reference S. Yang, P. Zhao, X. Zhao, L. Qu, X. Lai, InP and Sn:InP based quantum dot sensitized solar cells. J. Mater. Chem. A 3, 21922–21929 (2015)CrossRef S. Yang, P. Zhao, X. Zhao, L. Qu, X. Lai, InP and Sn:InP based quantum dot sensitized solar cells. J. Mater. Chem. A 3, 21922–21929 (2015)CrossRef
169.
go back to reference L. Hu, S. Huang, R. Patterson, J.E. Halpert, Enhanced mobility in PbS quantum dot films via PbSe quantum dot mixing for optoelectronic applications. J. Mater. Chem. A 7, 4497–4502 (2019) L. Hu, S. Huang, R. Patterson, J.E. Halpert, Enhanced mobility in PbS quantum dot films via PbSe quantum dot mixing for optoelectronic applications. J. Mater. Chem. A 7, 4497–4502 (2019)
170.
go back to reference Y.C. Choi, D.U. Lee, J.H. Noh, E.K. Kim, S.I. Seok, Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Mater. 24, 3587–3592 (2014) Y.C. Choi, D.U. Lee, J.H. Noh, E.K. Kim, S.I. Seok, Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Mater. 24, 3587–3592 (2014)
171.
go back to reference A. Tubtimtae, M.-W. Lee, G.-J. Wang, Ag2Se quantum-dot sensitized solar cells for full solar spectrum light harvesting. J. Power Sources 196, 6603–6608 (2011)CrossRef A. Tubtimtae, M.-W. Lee, G.-J. Wang, Ag2Se quantum-dot sensitized solar cells for full solar spectrum light harvesting. J. Power Sources 196, 6603–6608 (2011)CrossRef
172.
go back to reference F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu, G. Cao, High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 8, 34482–34489 (2016)CrossRef F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu, G. Cao, High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 8, 34482–34489 (2016)CrossRef
173.
go back to reference H. Zhang, K. Cheng, Y.M. Hou, Z. Fang, Z.X. Pan, W.J. Wu, J.L. Hua, X.H. Zhong, Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chem. Commun. 48, 11235–11237 (2012)CrossRef H. Zhang, K. Cheng, Y.M. Hou, Z. Fang, Z.X. Pan, W.J. Wu, J.L. Hua, X.H. Zhong, Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chem. Commun. 48, 11235–11237 (2012)CrossRef
174.
go back to reference J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 135, 15913–15922 (2013)CrossRef J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 135, 15913–15922 (2013)CrossRef
175.
go back to reference S. Jiao, J. Wang, Q. Shen, Y. Li, X. Zhong, Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J. Mater. Chem. A 4, 7214–7221 (2016)CrossRef S. Jiao, J. Wang, Q. Shen, Y. Li, X. Zhong, Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J. Mater. Chem. A 4, 7214–7221 (2016)CrossRef
176.
go back to reference S. Jiao, Q. Shen, I. Mora-Seró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, J. Bisquert, Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano 9, 908–915 (2015)CrossRef S. Jiao, Q. Shen, I. Mora-Seró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, J. Bisquert, Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano 9, 908–915 (2015)CrossRef
177.
go back to reference F. Huang, Q. Zhang, B. Xu, J. Hou, Y. Wang, R.C. Massé, S. Peng, J. Liu, G. Cao, A comparison of ZnS and ZnSe passivation layers on CdS/CdSe co-sensitized quantum dot solar cells. J. Mater. Chem. A 4, 14773–14780 (2016)CrossRef F. Huang, Q. Zhang, B. Xu, J. Hou, Y. Wang, R.C. Massé, S. Peng, J. Liu, G. Cao, A comparison of ZnS and ZnSe passivation layers on CdS/CdSe co-sensitized quantum dot solar cells. J. Mater. Chem. A 4, 14773–14780 (2016)CrossRef
178.
go back to reference A. Sahasrabudhe, S. Bhattacharyya, Dual sensitization strategy for high-performance core/shell/quasi-shell quantum dot solar cells. Chem. Mater. 27, 4848–4859 (2015)CrossRef A. Sahasrabudhe, S. Bhattacharyya, Dual sensitization strategy for high-performance core/shell/quasi-shell quantum dot solar cells. Chem. Mater. 27, 4848–4859 (2015)CrossRef
179.
go back to reference L. Mu, C. Liu, J. Jia, X. Zhou, Y. Lin, Dual post-treatment: a strategy towards high efficiency quantum dot sensitized solar cells. J. Mater. Chem. A 1, 8353–8357 (2013)CrossRef L. Mu, C. Liu, J. Jia, X. Zhou, Y. Lin, Dual post-treatment: a strategy towards high efficiency quantum dot sensitized solar cells. J. Mater. Chem. A 1, 8353–8357 (2013)CrossRef
180.
go back to reference G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, Q. Meng, Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 35, 17–25 (2017)CrossRef G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, Q. Meng, Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 35, 17–25 (2017)CrossRef
181.
go back to reference W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, X. Zhong, Alloying strategy in Cu–In–Ga–Se quantum dots for high efficiency quantum dot sensitized solar cells. ACS Appl. Mater. Interfaces 9, 5328–5336 (2017)CrossRef W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, X. Zhong, Alloying strategy in Cu–In–Ga–Se quantum dots for high efficiency quantum dot sensitized solar cells. ACS Appl. Mater. Interfaces 9, 5328–5336 (2017)CrossRef
182.
go back to reference P.K. Santra, P.V. Kamat, Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J. Am. Chem. Soc. 135, 877–885 (2013)CrossRef P.K. Santra, P.V. Kamat, Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J. Am. Chem. Soc. 135, 877–885 (2013)CrossRef
183.
go back to reference B. Bai, D. Kou, W. Zhou, Z. Zhou, S. Wu, Application of quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells based on the hydrolysis approach. Green Chem. 17, 4377–4382 (2015)CrossRef B. Bai, D. Kou, W. Zhou, Z. Zhou, S. Wu, Application of quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells based on the hydrolysis approach. Green Chem. 17, 4377–4382 (2015)CrossRef
184.
go back to reference B. Bai, D. Kou, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S. Wu, Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: synthesis, passivation and ligand exchange. J. Power Sources 318, 35–40 (2016)CrossRef B. Bai, D. Kou, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S. Wu, Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: synthesis, passivation and ligand exchange. J. Power Sources 318, 35–40 (2016)CrossRef
185.
go back to reference L. Yue, H. Rao, J. Du, Z. Pan, J. Yu, X. Zhong, Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Adv. 8, 3637–3645 (2018)CrossRef L. Yue, H. Rao, J. Du, Z. Pan, J. Yu, X. Zhong, Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Adv. 8, 3637–3645 (2018)CrossRef
186.
go back to reference L. Zhang, Z. Pan, W. Wang, J. Du, Z. Ren, Q. Shen, X. Zhong, Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. J. Mater. Chem. A 5, 21442–21451 (2017)CrossRef L. Zhang, Z. Pan, W. Wang, J. Du, Z. Ren, Q. Shen, X. Zhong, Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. J. Mater. Chem. A 5, 21442–21451 (2017)CrossRef
187.
go back to reference E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski, L.M. Wheeler, P. Schulz, L.Y. Lin, M.C. Beard, J.M. Luther, Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)CrossRef E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski, L.M. Wheeler, P. Schulz, L.Y. Lin, M.C. Beard, J.M. Luther, Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)CrossRef
188.
go back to reference J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)CrossRef J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)CrossRef
189.
go back to reference J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva, M.E. Liao, S.-Y. Chang, L. Meng, D. Meng, P. Sun, O. Lin, M.S. Goorsky, Y. Yang, Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018)CrossRef J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva, M.E. Liao, S.-Y. Chang, L. Meng, D. Meng, P. Sun, O. Lin, M.S. Goorsky, Y. Yang, Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018)CrossRef
190.
go back to reference A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, G.J. Wang, Ag2S quantum dot-sensitized solar cells. Electrochem. Commun. 12, 1158–1160 (2010)CrossRef A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, G.J. Wang, Ag2S quantum dot-sensitized solar cells. Electrochem. Commun. 12, 1158–1160 (2010)CrossRef
191.
go back to reference W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, L.-M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124–1125 (2008)CrossRef W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, L.-M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124–1125 (2008)CrossRef
192.
go back to reference Y.-L. Lee, B.-M. Huang, H.-T. Chien, Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20, 6903–6905 (2008)CrossRef Y.-L. Lee, B.-M. Huang, H.-T. Chien, Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20, 6903–6905 (2008)CrossRef
193.
go back to reference M.A. Becker, J.G. Radich, B.A. Bunker, P.V. Kamat, How does a SILAR CdSe film grow? Tuning the deposition steps to suppress interfacial charge recombination in solar cells. J. Phys. Chem. Lett. 5, 1575–1582 (2014)CrossRef M.A. Becker, J.G. Radich, B.A. Bunker, P.V. Kamat, How does a SILAR CdSe film grow? Tuning the deposition steps to suppress interfacial charge recombination in solar cells. J. Phys. Chem. Lett. 5, 1575–1582 (2014)CrossRef
194.
go back to reference Z. Yang, H.-T. Chang, CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%. Sol. Energy Mater. Sol. Cells 94, 2046–2051 (2010)CrossRef Z. Yang, H.-T. Chang, CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%. Sol. Energy Mater. Sol. Cells 94, 2046–2051 (2010)CrossRef
195.
go back to reference B.S. Kwak, Y. Im, M. Kang, Design of a free-ruthenium In2S3 crystalline photosensitized solar cell. Int. J. Photoenergy 2014, 8 (2014)CrossRef B.S. Kwak, Y. Im, M. Kang, Design of a free-ruthenium In2S3 crystalline photosensitized solar cell. Int. J. Photoenergy 2014, 8 (2014)CrossRef
196.
go back to reference J.-W. Lee, D.-Y. Son, T.K. Ahn, H.-W. Shin, I.Y. Kim, S.-J. Hwang, M.J. Ko, S. Sul, H. Han, N.-G. Park, Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3, 1050 (2013)CrossRef J.-W. Lee, D.-Y. Son, T.K. Ahn, H.-W. Shin, I.Y. Kim, S.-J. Hwang, M.J. Ko, S. Sul, H. Han, N.-G. Park, Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3, 1050 (2013)CrossRef
197.
go back to reference L.-Y. Chang, R.R. Lunt, P.R. Brown, V. Bulović, M.G. Bawendi, Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. Nano Lett. 13, 994–999 (2013)CrossRef L.-Y. Chang, R.R. Lunt, P.R. Brown, V. Bulović, M.G. Bawendi, Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. Nano Lett. 13, 994–999 (2013)CrossRef
198.
go back to reference V. González-Pedro, C. Sima, G. Marzari, P.P. Boix, S. Giménez, Q. Shen, T. Dittrich, I. Mora-Seró, High performance PbS quantum dot sensitized solar cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation. Phys. Chem. Chem. Phys. 15, 13835–13843 (2013)CrossRef V. González-Pedro, C. Sima, G. Marzari, P.P. Boix, S. Giménez, Q. Shen, T. Dittrich, I. Mora-Seró, High performance PbS quantum dot sensitized solar cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation. Phys. Chem. Chem. Phys. 15, 13835–13843 (2013)CrossRef
199.
go back to reference X. Zhang, Y. Zhang, H. Wu, L. Yan, Z. Wang, J. Zhao, W.W. Yu, A.L. Rogach, PbSe quantum dot films with enhanced electron mobility employed in hybrid polymer/nanocrystal solar cells. RSC Adv. 6, 17029–17035 (2016)CrossRef X. Zhang, Y. Zhang, H. Wu, L. Yan, Z. Wang, J. Zhao, W.W. Yu, A.L. Rogach, PbSe quantum dot films with enhanced electron mobility employed in hybrid polymer/nanocrystal solar cells. RSC Adv. 6, 17029–17035 (2016)CrossRef
200.
go back to reference J. Zhang, J. Gao, C.P. Church, E.M. Miller, J.M. Luther, V.I. Klimov, M.C. Beard, PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 14, 6010–6015 (2014)CrossRef J. Zhang, J. Gao, C.P. Church, E.M. Miller, J.M. Luther, V.I. Klimov, M.C. Beard, PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 14, 6010–6015 (2014)CrossRef
201.
go back to reference S.H. Im, C.-S. Lim, J.A. Chang, Y.H. Lee, N. Maiti, H.-J. Kim, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Lett. 11, 4789–4793 (2011)CrossRef S.H. Im, C.-S. Lim, J.A. Chang, Y.H. Lee, N. Maiti, H.-J. Kim, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Lett. 11, 4789–4793 (2011)CrossRef
202.
go back to reference J.A. Chang, S.H. Im, Y.H. Lee, H.-J. Kim, C.-S. Lim, J.H. Heo, S.I. Seok, Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12, 1863–1867 (2012)CrossRef J.A. Chang, S.H. Im, Y.H. Lee, H.-J. Kim, C.-S. Lim, J.H. Heo, S.I. Seok, Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12, 1863–1867 (2012)CrossRef
203.
go back to reference O.S. Hutter, L.J. Phillips, K. Durose, J.D. Major, 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer. Sol. Energy Mater. Sol. Cells 188, 177–181 (2018)CrossRef O.S. Hutter, L.J. Phillips, K. Durose, J.D. Major, 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer. Sol. Energy Mater. Sol. Cells 188, 177–181 (2018)CrossRef
204.
go back to reference C. Chen, L. Wang, L. Gao, D. Nam, D. Li, K. Li, Y. Zhao, C. Ge, H. Cheong, H. Liu, H. Song, J. Tang, 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2, 2125–2132 (2017)CrossRef C. Chen, L. Wang, L. Gao, D. Nam, D. Li, K. Li, Y. Zhao, C. Ge, H. Cheong, H. Liu, H. Song, J. Tang, 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2, 2125–2132 (2017)CrossRef
205.
go back to reference R.E. Bailey, S. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106 (2003)CrossRef R.E. Bailey, S. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106 (2003)CrossRef
206.
go back to reference M.D. Regulacio, M.-Y. Han, Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 43, 621–630 (2010)CrossRef M.D. Regulacio, M.-Y. Han, Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 43, 621–630 (2010)CrossRef
207.
go back to reference A. Kumar, K.-T. Li, A.R. Madaria, C.J.N.R. Zhou, Sensitization of hydrothermally grown single crystalline TiO2 nanowire array with CdSeS nanocrystals for photovoltaic applications. Nano Res. 4, 1181–1190 (2011)CrossRef A. Kumar, K.-T. Li, A.R. Madaria, C.J.N.R. Zhou, Sensitization of hydrothermally grown single crystalline TiO2 nanowire array with CdSeS nanocrystals for photovoltaic applications. Nano Res. 4, 1181–1190 (2011)CrossRef
208.
go back to reference M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F. Barbara, B.A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J. Am. Chem. Soc. 130, 16770–16777 (2008)CrossRef M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F. Barbara, B.A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J. Am. Chem. Soc. 130, 16770–16777 (2008)CrossRef
209.
go back to reference J.-Y. Kim, J. Yang, J.H. Yu, W. Baek, C.-H. Lee, H.J. Son, T. Hyeon, M.J. Ko, Highly efficient copper–indium–selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS Nano 9, 11286–11295 (2015)CrossRef J.-Y. Kim, J. Yang, J.H. Yu, W. Baek, C.-H. Lee, H.J. Son, T. Hyeon, M.J. Ko, Highly efficient copper–indium–selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS Nano 9, 11286–11295 (2015)CrossRef
210.
go back to reference R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)CrossRef R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)CrossRef
211.
go back to reference Y.-L. Lee, Y.-S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Func. Mater. 19, 604–609 (2009)CrossRef Y.-L. Lee, Y.-S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Func. Mater. 19, 604–609 (2009)CrossRef
212.
go back to reference J. Yang, J. Wang, K. Zhao, T. Izuishi, Y. Li, Q. Shen, X. Zhong, CdSeTe/CdS type-I core/shell quantum dot sensitized solar cells with efficiency over 9%. J. Phys. Chem. C 119, 28800–28808 (2015)CrossRef J. Yang, J. Wang, K. Zhao, T. Izuishi, Y. Li, Q. Shen, X. Zhong, CdSeTe/CdS type-I core/shell quantum dot sensitized solar cells with efficiency over 9%. J. Phys. Chem. C 119, 28800–28808 (2015)CrossRef
213.
go back to reference P.V. Kamat, Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 45, 1906–1915 (2012)CrossRef P.V. Kamat, Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 45, 1906–1915 (2012)CrossRef
214.
go back to reference Z. Pan, H. Rao, I. Mora-Seró, J. Bisquert, X. Zhong, Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659–7702 (2018)CrossRef Z. Pan, H. Rao, I. Mora-Seró, J. Bisquert, X. Zhong, Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659–7702 (2018)CrossRef
215.
go back to reference J. Chen, W. Lei, W.Q. Deng, Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot. Nanoscale 3, 674–677 (2011)CrossRef J. Chen, W. Lei, W.Q. Deng, Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot. Nanoscale 3, 674–677 (2011)CrossRef
216.
go back to reference A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef
217.
go back to reference M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838 (2014)CrossRef M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838 (2014)CrossRef
218.
go back to reference N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015)CrossRef N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015)CrossRef
219.
go back to reference A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)CrossRef A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)CrossRef
220.
go back to reference Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 6, 1–23, 23 (2016) Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 6, 1–23, 23 (2016)
221.
go back to reference H. Tan, A. Jain, O. Voznyy, X. Lan, F.P.G. de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722 (2017)CrossRef H. Tan, A. Jain, O. Voznyy, X. Lan, F.P.G. de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722 (2017)CrossRef
222.
go back to reference M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule (2019) M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule (2019)
223.
go back to reference S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, C.K. Hong, Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem. Mater. 27, 1541–1551 (2015)CrossRef S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, C.K. Hong, Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem. Mater. 27, 1541–1551 (2015)CrossRef
224.
go back to reference Y. Yu, J. Li, D. Geng, J. Wang, L. Zhang, T.L. Andrew, M.S. Arnold, X. Wang, Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano 9, 564–572 (2015)CrossRef Y. Yu, J. Li, D. Geng, J. Wang, L. Zhang, T.L. Andrew, M.S. Arnold, X. Wang, Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano 9, 564–572 (2015)CrossRef
225.
go back to reference H.-Y. Yang, W.-Y. Rho, S.K. Lee, S.H. Kim, Y.-B. Hahn, TiO2 nanoparticles/nanotubes for efficient light harvesting in perovskite solar cells. Nanomaterials (Basel) 9, 326 (2019)CrossRef H.-Y. Yang, W.-Y. Rho, S.K. Lee, S.H. Kim, Y.-B. Hahn, TiO2 nanoparticles/nanotubes for efficient light harvesting in perovskite solar cells. Nanomaterials (Basel) 9, 326 (2019)CrossRef
226.
go back to reference C. Chen, S. Wu, J. Wang, S. Chen, T. Peng, R. Li, Improved photovoltaic performance of perovskite solar cells based on three-dimensional rutile TiO2 nanodendrite array film. Nanoscale 10, 20836–20843 (2018)CrossRef C. Chen, S. Wu, J. Wang, S. Chen, T. Peng, R. Li, Improved photovoltaic performance of perovskite solar cells based on three-dimensional rutile TiO2 nanodendrite array film. Nanoscale 10, 20836–20843 (2018)CrossRef
227.
go back to reference K. Schutt, P.K. Nayak, A.J. Ramadan, B. Wenger, Y.-H. Lin, H.J. Snaith, Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv. Funct. Mater 1900466 (2019) K. Schutt, P.K. Nayak, A.J. Ramadan, B. Wenger, Y.-H. Lin, H.J. Snaith, Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv. Funct. Mater 1900466 (2019)
228.
go back to reference K. Mahmood, M.T. Mehran, F. Rehman, M.S. Zafar, S.W. Ahmad, R.-H. Song, Electrosprayed polymer-hybridized multidoped ZnO mesoscopic nanocrystals yield highly efficient and stable perovskite solar cells. ACS Omega 3, 9648–9657 (2018)CrossRef K. Mahmood, M.T. Mehran, F. Rehman, M.S. Zafar, S.W. Ahmad, R.-H. Song, Electrosprayed polymer-hybridized multidoped ZnO mesoscopic nanocrystals yield highly efficient and stable perovskite solar cells. ACS Omega 3, 9648–9657 (2018)CrossRef
229.
go back to reference K. Mahmood, B.S. Swain, A. Amassian, 16.1% efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays. Adv. Energy Mater. 5, 1500568 (2015)CrossRef K. Mahmood, B.S. Swain, A. Amassian, 16.1% efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays. Adv. Energy Mater. 5, 1500568 (2015)CrossRef
230.
go back to reference Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019)CrossRef Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019)CrossRef
231.
go back to reference Y. Lee, S. Paek, K.T. Cho, E. Oveisi, P. Gao, S. Lee, J.-S. Park, Y. Zhang, R. Humphry-Baker, A.M. Asiri, M.K. Nazeeruddin, Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A 5, 12729–12734 (2017)CrossRef Y. Lee, S. Paek, K.T. Cho, E. Oveisi, P. Gao, S. Lee, J.-S. Park, Y. Zhang, R. Humphry-Baker, A.M. Asiri, M.K. Nazeeruddin, Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A 5, 12729–12734 (2017)CrossRef
232.
go back to reference E.J. Yeom, S.S. Shin, W.S. Yang, S.J. Lee, W. Yin, D. Kim, J.H. Noh, T.K. Ahn, S.I. Seok, Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. J. Mater. Chem. A 5, 79–86 (2017)CrossRef E.J. Yeom, S.S. Shin, W.S. Yang, S.J. Lee, W. Yin, D. Kim, J.H. Noh, T.K. Ahn, S.I. Seok, Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. J. Mater. Chem. A 5, 79–86 (2017)CrossRef
233.
go back to reference G.S. Han, H.S. Chung, D.H. Kim, B.J. Kim, J.-W. Lee, N.-G. Park, I.S. Cho, J.-K. Lee, S. Lee, H.S. Jung, Epitaxial 1D electron transport layers for high-performance perovskite solar cells. Nanoscale 7, 15284–15290 (2015)CrossRef G.S. Han, H.S. Chung, D.H. Kim, B.J. Kim, J.-W. Lee, N.-G. Park, I.S. Cho, J.-K. Lee, S. Lee, H.S. Jung, Epitaxial 1D electron transport layers for high-performance perovskite solar cells. Nanoscale 7, 15284–15290 (2015)CrossRef
234.
go back to reference C. Gao, S. Yuan, B. Cao, J. Yu, SnO2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells. Chem. Eng. J. 325, 378–385 (2017)CrossRef C. Gao, S. Yuan, B. Cao, J. Yu, SnO2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells. Chem. Eng. J. 325, 378–385 (2017)CrossRef
235.
go back to reference Q. Liu, M.-C. Qin, W.-J. Ke, X.-L. Zheng, Z. Chen, P.-L. Qin, L.-B. Xiong, H.-W. Lei, J.-W. Wan, J. Wen, G. Yang, J.-J. Ma, Z.-Y. Zhang, G.-J. Fang, Enhanced stability of perovskite solar cells with low-temperature hydrothermally grown SnO2 electron transport layers. Adv. Func. Mater. 26, 6069–6075 (2016)CrossRef Q. Liu, M.-C. Qin, W.-J. Ke, X.-L. Zheng, Z. Chen, P.-L. Qin, L.-B. Xiong, H.-W. Lei, J.-W. Wan, J. Wen, G. Yang, J.-J. Ma, Z.-Y. Zhang, G.-J. Fang, Enhanced stability of perovskite solar cells with low-temperature hydrothermally grown SnO2 electron transport layers. Adv. Func. Mater. 26, 6069–6075 (2016)CrossRef
236.
go back to reference J. Lian, B. Lu, F. Niu, P. Zeng, X. Zhan, Electron-transport materials in perovskite solar cells. Small Methods 2, 1800082 (2018)CrossRef J. Lian, B. Lu, F. Niu, P. Zeng, X. Zhan, Electron-transport materials in perovskite solar cells. Small Methods 2, 1800082 (2018)CrossRef
237.
go back to reference C.S. Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, V. Sundström, Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014)CrossRef C.S. Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, V. Sundström, Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014)CrossRef
238.
go back to reference S. Song, G. Kang, L. Pyeon, C. Lim, G.-Y. Lee, T. Park, J. Choi, Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett. 2, 2667–2673 (2017)CrossRef S. Song, G. Kang, L. Pyeon, C. Lim, G.-Y. Lee, T. Park, J. Choi, Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett. 2, 2667–2673 (2017)CrossRef
239.
go back to reference M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. 8, 1800794 (2018)CrossRef M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. 8, 1800794 (2018)CrossRef
240.
go back to reference H. Liu, Z. Huang, S. Wei, L. Zheng, L. Xiao, Q. Gong, Nano-structured electron transporting materials for perovskite solar cells. Nanoscale 8, 6209–6221 (2016)CrossRef H. Liu, Z. Huang, S. Wei, L. Zheng, L. Xiao, Q. Gong, Nano-structured electron transporting materials for perovskite solar cells. Nanoscale 8, 6209–6221 (2016)CrossRef
241.
go back to reference Y. Yang, K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li, H. Han, The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. J. Mater. Chem. A 3, 9103–9107 (2015)CrossRef Y. Yang, K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li, H. Han, The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. J. Mater. Chem. A 3, 9103–9107 (2015)CrossRef
242.
go back to reference S. Dharani, H.K. Mulmudi, N. Yantara, P.T. Thu Trang, N.G. Park, M. Graetzel, S. Mhaisalkar, N. Mathews, P.P. Boix, High efficiency electrospun TiO2 nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale 6, 1675–1679 (2014)CrossRef S. Dharani, H.K. Mulmudi, N. Yantara, P.T. Thu Trang, N.G. Park, M. Graetzel, S. Mhaisalkar, N. Mathews, P.P. Boix, High efficiency electrospun TiO2 nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale 6, 1675–1679 (2014)CrossRef
243.
go back to reference H.-S. Kim, J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.-G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013)CrossRef H.-S. Kim, J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.-G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013)CrossRef
244.
go back to reference A. Fakharuddin, F. Di Giacomo, I. Ahmed, Q. Wali, T.M. Brown, R. Jose, Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. J. Power Sources 283, 61–67 (2015)CrossRef A. Fakharuddin, F. Di Giacomo, I. Ahmed, Q. Wali, T.M. Brown, R. Jose, Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. J. Power Sources 283, 61–67 (2015)CrossRef
245.
go back to reference Q. Jiang, X. Sheng, Y. Li, X. Feng, T. Xu, Rutile TiO2 nanowire-based perovskite solar cells. Chem. Commun. 50, 14720–14723 (2014)CrossRef Q. Jiang, X. Sheng, Y. Li, X. Feng, T. Xu, Rutile TiO2 nanowire-based perovskite solar cells. Chem. Commun. 50, 14720–14723 (2014)CrossRef
246.
go back to reference X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, A. Cao, L.H. Wong, TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015)CrossRef X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, A. Cao, L.H. Wong, TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015)CrossRef
247.
go back to reference X. Liang, Y. Cheng, X. Xu, R. Dong, D. Li, Z. Zhou, R. Wei, G. Dong, S.-W. Tsang, J.C. Ho, Enhanced performance of perovskite solar cells based on vertical TiO2 nanotube arrays with full filling of CH3NH3PbI3. Appl. Surf. Sci. 451, 250–257 (2018)CrossRef X. Liang, Y. Cheng, X. Xu, R. Dong, D. Li, Z. Zhou, R. Wei, G. Dong, S.-W. Tsang, J.C. Ho, Enhanced performance of perovskite solar cells based on vertical TiO2 nanotube arrays with full filling of CH3NH3PbI3. Appl. Surf. Sci. 451, 250–257 (2018)CrossRef
248.
go back to reference N. Islam, M. Yang, K. Zhu, Z. Fan, Mesoporous scaffolds based on TiO2 nanorods and nanoparticles for efficient hybrid perovskite solar cells. J. Mater. Chem. A 3, 24315–24321 (2015)CrossRef N. Islam, M. Yang, K. Zhu, Z. Fan, Mesoporous scaffolds based on TiO2 nanorods and nanoparticles for efficient hybrid perovskite solar cells. J. Mater. Chem. A 3, 24315–24321 (2015)CrossRef
249.
go back to reference D. Zhong, B. Cai, X. Wang, Z. Yang, Y. Xing, S. Miao, W.-H. Zhang, C. Li, Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. Nano Energy 11, 409–418 (2015)CrossRef D. Zhong, B. Cai, X. Wang, Z. Yang, Y. Xing, S. Miao, W.-H. Zhang, C. Li, Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. Nano Energy 11, 409–418 (2015)CrossRef
250.
go back to reference J.-W. Lee, S.H. Lee, H.-S. Ko, J. Kwon, J.H. Park, S.M. Kang, N. Ahn, M. Choi, J.K. Kim, N.-G. Park, Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells. J. Mater. Chem. A 3, 9179–9186 (2015)CrossRef J.-W. Lee, S.H. Lee, H.-S. Ko, J. Kwon, J.H. Park, S.M. Kang, N. Ahn, M. Choi, J.K. Kim, N.-G. Park, Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells. J. Mater. Chem. A 3, 9179–9186 (2015)CrossRef
251.
go back to reference T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013)CrossRef T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013)CrossRef
252.
go back to reference M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)CrossRef M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)CrossRef
253.
go back to reference J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chem. Lett. 44, 610–612 (2015)CrossRef J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chem. Lett. 44, 610–612 (2015)CrossRef
254.
go back to reference J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B.-W. Mao, N. Zheng, Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 30, 1705596 (2018)CrossRef J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B.-W. Mao, N. Zheng, Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 30, 1705596 (2018)CrossRef
255.
go back to reference K. Mahmood, B.S. Swain, A. Amassian, Double-layered ZnO nanostructures for efficient perovskite solar cells. Nanoscale 6, 14674–14678 (2014)CrossRef K. Mahmood, B.S. Swain, A. Amassian, Double-layered ZnO nanostructures for efficient perovskite solar cells. Nanoscale 6, 14674–14678 (2014)CrossRef
256.
go back to reference D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J. Phys. Chem. C 118, 16567–16573 (2014)CrossRef D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J. Phys. Chem. C 118, 16567–16573 (2014)CrossRef
257.
go back to reference M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, K.H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Sol. Energy Mater. Sol. Cells 159, 251–264 (2017)CrossRef M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, K.H. Chan, M. Wright, C. Xu, F. Haque, A. Uddin, Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Sol. Energy Mater. Sol. Cells 159, 251–264 (2017)CrossRef
258.
go back to reference Y. Dkhissi, S. Meyer, D. Chen, H.C. Weerasinghe, L. Spiccia, Y.-B. Cheng, R.A. Caruso, Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates. Chemsuschem 9, 687–695 (2016)CrossRef Y. Dkhissi, S. Meyer, D. Chen, H.C. Weerasinghe, L. Spiccia, Y.-B. Cheng, R.A. Caruso, Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates. Chemsuschem 9, 687–695 (2016)CrossRef
259.
go back to reference Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip, S.-W. Tsang, Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 7, 19986–19993 (2015)CrossRef Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip, S.-W. Tsang, Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 7, 19986–19993 (2015)CrossRef
260.
go back to reference J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 27, 4229–4236 (2015)CrossRef J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 27, 4229–4236 (2015)CrossRef
261.
go back to reference X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, H. Lin, Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. ACS Appl. Mater. Interfaces 8, 7826–7833 (2016)CrossRef X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, H. Lin, Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. ACS Appl. Mater. Interfaces 8, 7826–7833 (2016)CrossRef
262.
go back to reference R. Chen, J. Cao, Y. Duan, Y. Hui, T.T. Chuong, D. Ou, F. Han, F. Cheng, X. Huang, B. Wu, N. Zheng, High-efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO–ZnS electron transport layer. J. Am. Chem. Soc. 141, 541–547 (2019)CrossRef R. Chen, J. Cao, Y. Duan, Y. Hui, T.T. Chuong, D. Ou, F. Han, F. Cheng, X. Huang, B. Wu, N. Zheng, High-efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO–ZnS electron transport layer. J. Am. Chem. Soc. 141, 541–547 (2019)CrossRef
263.
go back to reference L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the application of SnO2 in perovskite solar cells. Adv. Func. Mater. 28, 1802757 (2018)CrossRef L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the application of SnO2 in perovskite solar cells. Adv. Func. Mater. 28, 1802757 (2018)CrossRef
264.
go back to reference Z. Liu, K. Deng, J. Hu, L. Li, Coagulated SnO2 colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability. Angew. Chem. Int. Ed. (2019) Z. Liu, K. Deng, J. Hu, L. Li, Coagulated SnO2 colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability. Angew. Chem. Int. Ed. (2019)
265.
go back to reference Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017)CrossRef Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017)CrossRef
266.
go back to reference Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016)CrossRef Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016)CrossRef
267.
go back to reference Y. Luan, X. Yi, P. Mao, Y. Wei, J. Zhuang, N. Chen, T. Lin, C. Li, J. Wang, High-performance planar perovskite solar cells with negligible hysteresis using 2,2,2-trifluoroethanol-incorporated SnO2. iScience 16, 433–441 (2019)CrossRef Y. Luan, X. Yi, P. Mao, Y. Wei, J. Zhuang, N. Chen, T. Lin, C. Li, J. Wang, High-performance planar perovskite solar cells with negligible hysteresis using 2,2,2-trifluoroethanol-incorporated SnO2. iScience 16, 433–441 (2019)CrossRef
268.
go back to reference Q. Dong, Y. Shi, C. Zhang, Y. Wu, L. Wang, Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy 40, 336–344 (2017)CrossRef Q. Dong, Y. Shi, C. Zhang, Y. Wu, L. Wang, Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy 40, 336–344 (2017)CrossRef
269.
go back to reference W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015)CrossRef W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015)CrossRef
270.
go back to reference J. Barbé, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A.E. Labban, M. Abulikemu, W. Yue, O.F. Mohammed, I. McCulloch, A. Amassian, S. Del Gobbo, Amorphous tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 9, 11828–11836 (2017)CrossRef J. Barbé, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A.E. Labban, M. Abulikemu, W. Yue, O.F. Mohammed, I. McCulloch, A. Amassian, S. Del Gobbo, Amorphous tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 9, 11828–11836 (2017)CrossRef
271.
go back to reference P. Pinpithak, H.-W. Chen, A. Kulkarni, Y. Sanehira, M. Ikegami, T. Miyasaka, Low-temperature and ambient air processes of amorphous SnOx-based mixed halide perovskite planar solar cell. Chem. Lett. 46, 382–384 (2017)CrossRef P. Pinpithak, H.-W. Chen, A. Kulkarni, Y. Sanehira, M. Ikegami, T. Miyasaka, Low-temperature and ambient air processes of amorphous SnOx-based mixed halide perovskite planar solar cell. Chem. Lett. 46, 382–384 (2017)CrossRef
272.
go back to reference C. Wang, D. Zhao, C.R. Grice, W. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P.J. Roland, J. Chen, Z. Yu, P. Liu, N. Cheng, R.J. Ellingson, X. Zhao, Y. Yan, Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J. Mater. Chem. A 4, 12080–12087 (2016)CrossRef C. Wang, D. Zhao, C.R. Grice, W. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P.J. Roland, J. Chen, Z. Yu, P. Liu, N. Cheng, R.J. Ellingson, X. Zhao, Y. Yan, Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J. Mater. Chem. A 4, 12080–12087 (2016)CrossRef
273.
go back to reference B. Roose, J.-P.C. Baena, K.C. Gödel, M. Graetzel, A. Hagfeldt, U. Steiner, A. Abate, Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy 30, 517–522 (2016)CrossRef B. Roose, J.-P.C. Baena, K.C. Gödel, M. Graetzel, A. Hagfeldt, U. Steiner, A. Abate, Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy 30, 517–522 (2016)CrossRef
274.
go back to reference L. Xiong, M. Qin, C. Chen, J. Wen, G. Yang, Y. Guo, J. Ma, Q. Zhang, P. Qin, S. Li, G. Fang, Fully high-temperature-processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells. Adv. Func. Mater. 28, 1706276 (2018)CrossRef L. Xiong, M. Qin, C. Chen, J. Wen, G. Yang, Y. Guo, J. Ma, Q. Zhang, P. Qin, S. Li, G. Fang, Fully high-temperature-processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells. Adv. Func. Mater. 28, 1706276 (2018)CrossRef
275.
go back to reference M.A. Mejía Escobar, S. Pathak, J. Liu, H.J. Snaith, F. Jaramillo, ZrO2/TiO2 electron collection layer for efficient meso-superstructured hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 9, 2342–2349 (2017)CrossRef M.A. Mejía Escobar, S. Pathak, J. Liu, H.J. Snaith, F. Jaramillo, ZrO2/TiO2 electron collection layer for efficient meso-superstructured hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 9, 2342–2349 (2017)CrossRef
276.
go back to reference Y. Li, L. Zhao, S. Wei, M. Xiao, B. Dong, L. Wan, S. Wang, Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells. Appl. Surf. Sci. 439, 506–515 (2018)CrossRef Y. Li, L. Zhao, S. Wei, M. Xiao, B. Dong, L. Wan, S. Wang, Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells. Appl. Surf. Sci. 439, 506–515 (2018)CrossRef
277.
go back to reference M. Che, L. Zhu, Y.L. Zhao, D.S. Yao, X.Q. Gu, J. Song, Y.H. Qiang, Enhancing current density of perovskite solar cells using TiO2-ZrO2 composite scaffold layer. Mater. Sci. Semicond. Process. 56, 29–36 (2016)CrossRef M. Che, L. Zhu, Y.L. Zhao, D.S. Yao, X.Q. Gu, J. Song, Y.H. Qiang, Enhancing current density of perovskite solar cells using TiO2-ZrO2 composite scaffold layer. Mater. Sci. Semicond. Process. 56, 29–36 (2016)CrossRef
278.
go back to reference H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang, G. Zhang, Z. Kang, Y. Zhang, An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22, 223–231 (2016)CrossRef H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang, G. Zhang, Z. Kang, Y. Zhang, An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22, 223–231 (2016)CrossRef
279.
go back to reference Y. Numata, Y. Sanehira, T. Miyasaka, Impacts of Heterogeneous TiO2 and Al2O3 composite mesoporous scaffold on formamidinium lead trihalide perovskite solar cells. ACS Appl. Mater. Interfaces 8, 4608–4615 (2016)CrossRef Y. Numata, Y. Sanehira, T. Miyasaka, Impacts of Heterogeneous TiO2 and Al2O3 composite mesoporous scaffold on formamidinium lead trihalide perovskite solar cells. ACS Appl. Mater. Interfaces 8, 4608–4615 (2016)CrossRef
280.
go back to reference N. Cheng, P. Liu, S. Bai, Z. Yu, W. Liu, S.-S. Guo, X.-Z. Zhao, Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells. J. Power Sources 321, 71–75 (2016)CrossRef N. Cheng, P. Liu, S. Bai, Z. Yu, W. Liu, S.-S. Guo, X.-Z. Zhao, Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells. J. Power Sources 321, 71–75 (2016)CrossRef
281.
go back to reference S.H. Hwang, J. Roh, J. Lee, J. Ryu, J. Yun, J. Jang, Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J. Mater. Chem. A 2, 16429–16433 (2014)CrossRef S.H. Hwang, J. Roh, J. Lee, J. Ryu, J. Yun, J. Jang, Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J. Mater. Chem. A 2, 16429–16433 (2014)CrossRef
282.
go back to reference F. Qi, C. Wang, N. Cheng, P. Liu, Y. Xiao, F. Li, X. Sun, W. Liu, S. Guo, X.-Z. Zhao, Improving the performance through SPR effect by employing Au@SiO2 core-shell nanoparticles incorporated TiO2 scaffold in efficient hole transport material free perovskite solar cells. Electrochim. Acta 282, 10–15 (2018)CrossRef F. Qi, C. Wang, N. Cheng, P. Liu, Y. Xiao, F. Li, X. Sun, W. Liu, S. Guo, X.-Z. Zhao, Improving the performance through SPR effect by employing Au@SiO2 core-shell nanoparticles incorporated TiO2 scaffold in efficient hole transport material free perovskite solar cells. Electrochim. Acta 282, 10–15 (2018)CrossRef
283.
go back to reference A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, T. Wu, Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118, 28494–28501 (2014)CrossRef A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, T. Wu, Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118, 28494–28501 (2014)CrossRef
284.
go back to reference Y. Okamoto, R. Fukui, M. Fukazawa, Y. Suzuki, SrTiO3/TiO2 composite electron transport layer for perovskite solar cells. Mater. Lett. 187, 111–113 (2017)CrossRef Y. Okamoto, R. Fukui, M. Fukazawa, Y. Suzuki, SrTiO3/TiO2 composite electron transport layer for perovskite solar cells. Mater. Lett. 187, 111–113 (2017)CrossRef
285.
go back to reference L. Zhu, Z. Shao, J. Ye, X. Zhang, X. Pan, S. Dai, Mesoporous BaSnO3 layer based perovskite solar cells. Chem. Commun. 52, 970–973 (2016)CrossRef L. Zhu, Z. Shao, J. Ye, X. Zhang, X. Pan, S. Dai, Mesoporous BaSnO3 layer based perovskite solar cells. Chem. Commun. 52, 970–973 (2016)CrossRef
286.
go back to reference L. Zhu, J. Ye, X. Zhang, H. Zheng, G. Liu, X. Pan, S. Dai, Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J. Mater. Chem. A 5, 3675–3682 (2017)CrossRef L. Zhu, J. Ye, X. Zhang, H. Zheng, G. Liu, X. Pan, S. Dai, Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J. Mater. Chem. A 5, 3675–3682 (2017)CrossRef
287.
go back to reference S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S.I. Seok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167 (2017)CrossRef S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S.I. Seok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167 (2017)CrossRef
288.
go back to reference L.S. Oh, D.H. Kim, J.A. Lee, S.S. Shin, J.-W. Lee, I.J. Park, M.J. Ko, N.-G. Park, S.G. Pyo, K.S. Hong, J.Y. Kim, Zn2SnO4-based photoelectrodes for organolead halide perovskite solar cells. J. Phys. Chem. C 118, 22991–22994 (2014)CrossRef L.S. Oh, D.H. Kim, J.A. Lee, S.S. Shin, J.-W. Lee, I.J. Park, M.J. Ko, N.-G. Park, S.G. Pyo, K.S. Hong, J.Y. Kim, Zn2SnO4-based photoelectrodes for organolead halide perovskite solar cells. J. Phys. Chem. C 118, 22991–22994 (2014)CrossRef
289.
go back to reference A. Bera, A.D. Sheikh, M.A. Haque, R. Bose, E. Alarousu, O.F. Mohammed, T. Wu, Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: interface matters. ACS Appl. Mater. Interfaces 7, 28404–28411 (2015)CrossRef A. Bera, A.D. Sheikh, M.A. Haque, R. Bose, E. Alarousu, O.F. Mohammed, T. Wu, Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: interface matters. ACS Appl. Mater. Interfaces 7, 28404–28411 (2015)CrossRef
290.
go back to reference W.-Q. Wu, D. Chen, F. Li, Y.-B. Cheng, R.A. Caruso, Solution-processed Zn2SnO4 electron transporting layer for efficient planar perovskite solar cells. Mater. Today Energy 7, 260–266 (2018)CrossRef W.-Q. Wu, D. Chen, F. Li, Y.-B. Cheng, R.A. Caruso, Solution-processed Zn2SnO4 electron transporting layer for efficient planar perovskite solar cells. Mater. Today Energy 7, 260–266 (2018)CrossRef
291.
go back to reference S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, S.I. Seok, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015)CrossRef S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, S.I. Seok, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015)CrossRef
292.
go back to reference M. Tai, X. Zhao, H. Shen, Y. Guo, M. Zhang, Y. Zhou, X. Li, Z. Yao, X. Yin, J. Han, X. Li, H. Lin, Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells. Chem. Eng. J. 361, 60–66 (2019)CrossRef M. Tai, X. Zhao, H. Shen, Y. Guo, M. Zhang, Y. Zhou, X. Li, Z. Yao, X. Yin, J. Han, X. Li, H. Lin, Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells. Chem. Eng. J. 361, 60–66 (2019)CrossRef
293.
go back to reference W. Chen, Y. Zhou, L. Wang, Y. Wu, B. Tu, B. Yu, F. Liu, H.-W. Tam, G. Wang, A.B. Djurišić, L. Huang, Z. He, Molecule-doped nickel oxide: verified charge transfer and planar inverted mixed cation perovskite solar cell. Adv. Mater. 30, 1800515 (2018)CrossRef W. Chen, Y. Zhou, L. Wang, Y. Wu, B. Tu, B. Yu, F. Liu, H.-W. Tam, G. Wang, A.B. Djurišić, L. Huang, Z. He, Molecule-doped nickel oxide: verified charge transfer and planar inverted mixed cation perovskite solar cell. Adv. Mater. 30, 1800515 (2018)CrossRef
294.
go back to reference J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.-W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, C.S. Hwang, S.I. Seok, Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013–4019 (2015)CrossRef J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.-W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, C.S. Hwang, S.I. Seok, Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013–4019 (2015)CrossRef
295.
go back to reference H. Wang, Z. Yu, J. Lai, X. Song, X. Yang, A. Hagfeldt, L. Sun, One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. J. Mater. Chem. A 6, 21435–21444 (2018)CrossRef H. Wang, Z. Yu, J. Lai, X. Song, X. Yang, A. Hagfeldt, L. Sun, One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. J. Mater. Chem. A 6, 21435–21444 (2018)CrossRef
296.
go back to reference S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504–7512 (2017)CrossRef S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504–7512 (2017)CrossRef
297.
go back to reference W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, C. Huang, High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale 8, 10806–10813 (2016)CrossRef W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, C. Huang, High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale 8, 10806–10813 (2016)CrossRef
298.
go back to reference C. Zuo, L. Ding, Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11, 5528–5532 (2015)CrossRef C. Zuo, L. Ding, Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11, 5528–5532 (2015)CrossRef
299.
go back to reference C. Duan, M. Zhao, C. Zhao, Y. Wang, J. Li, W. Han, Q. Hu, L. Yao, H. Jian, F. Lu, T. Jiu, Inverted CH3NH3PbI3 perovskite solar cells based on solution-processed V2O5 film combined with P3CT salt as hole transport layer. Mater. Today Energy 9, 487–495 (2018)CrossRef C. Duan, M. Zhao, C. Zhao, Y. Wang, J. Li, W. Han, Q. Hu, L. Yao, H. Jian, F. Lu, T. Jiu, Inverted CH3NH3PbI3 perovskite solar cells based on solution-processed V2O5 film combined with P3CT salt as hole transport layer. Mater. Today Energy 9, 487–495 (2018)CrossRef
300.
go back to reference Y. Jiang, C. Li, H. Liu, R. Qin, H. Ma, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)–molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells. J. Mater. Chem. A 4, 9958–9966 (2016)CrossRef Y. Jiang, C. Li, H. Liu, R. Qin, H. Ma, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)–molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells. J. Mater. Chem. A 4, 9958–9966 (2016)CrossRef
301.
go back to reference S. Masi, R. Mastria, R. Scarfiello, S. Carallo, C. Nobile, S. Gambino, T. Sibillano, C. Giannini, S. Colella, A. Listorti, P.D. Cozzoli, A. Rizzo, Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells. Phys. Chem. Chem. Phys. 20, 11396–11404 (2018)CrossRef S. Masi, R. Mastria, R. Scarfiello, S. Carallo, C. Nobile, S. Gambino, T. Sibillano, C. Giannini, S. Colella, A. Listorti, P.D. Cozzoli, A. Rizzo, Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells. Phys. Chem. Chem. Phys. 20, 11396–11404 (2018)CrossRef
302.
go back to reference P. Tonui, S.O. Oseni, G. Sharma, Q. Yan, G. Tessema Mola, Perovskites photovoltaic solar cells: an overview of current status. Renew. Sustain. Energy Rev. 91, 1025–1044 (2018)CrossRef P. Tonui, S.O. Oseni, G. Sharma, Q. Yan, G. Tessema Mola, Perovskites photovoltaic solar cells: an overview of current status. Renew. Sustain. Energy Rev. 91, 1025–1044 (2018)CrossRef
303.
go back to reference J. Cui, F. Meng, H. Zhang, K. Cao, H. Yuan, Y. Cheng, F. Huang, M. Wang, CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS Appl. Mater. Interfaces 6, 22862–22870 (2014)CrossRef J. Cui, F. Meng, H. Zhang, K. Cao, H. Yuan, Y. Cheng, F. Huang, M. Wang, CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS Appl. Mater. Interfaces 6, 22862–22870 (2014)CrossRef
304.
go back to reference Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, Y. Hao, High-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 8, 1703432 (2018)CrossRef Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, Y. Hao, High-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 8, 1703432 (2018)CrossRef
305.
go back to reference W. Chen, F.-Z. Liu, X.-Y. Feng, A.B. Djurišić, W.K. Chan, Z.-B. He, Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7, 1700722 (2017)CrossRef W. Chen, F.-Z. Liu, X.-Y. Feng, A.B. Djurišić, W.K. Chan, Z.-B. He, Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7, 1700722 (2017)CrossRef
306.
go back to reference W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, Z.-B. He, Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 8, 1703519 (2018)CrossRef W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, Z.-B. He, Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 8, 1703519 (2018)CrossRef
307.
go back to reference G. Li, Y. Jiang, S. Deng, A. Tam, P. Xu, M. Wong, H.-S. Kwok, Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci. 4, 1700463 (2017)CrossRef G. Li, Y. Jiang, S. Deng, A. Tam, P. Xu, M. Wong, H.-S. Kwok, Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci. 4, 1700463 (2017)CrossRef
308.
go back to reference Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017)CrossRef Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017)CrossRef
309.
go back to reference T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J.A. Schwenzer, M. Hetterich, U. Lemmer, B.S. Richards, M. Powalla, U.W. Paetzold, Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics. Adv. Energy Mater. 9, 1802995 (2019)CrossRef T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J.A. Schwenzer, M. Hetterich, U. Lemmer, B.S. Richards, M. Powalla, U.W. Paetzold, Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics. Adv. Energy Mater. 9, 1802995 (2019)CrossRef
310.
go back to reference K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen, p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756 (2014)CrossRef K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen, p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756 (2014)CrossRef
311.
go back to reference R. Singh, P.K. Singh, B. Bhattacharya, H.-W. Rhee, Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl. Mater. Today 14, 175–200 (2019)CrossRef R. Singh, P.K. Singh, B. Bhattacharya, H.-W. Rhee, Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl. Mater. Today 14, 175–200 (2019)CrossRef
312.
go back to reference P. Pattanasattayavong, G.O.N. Ndjawa, K. Zhao, K.W. Chou, N. Yaacobi-Gross, B.C. O’Regan, A. Amassian, T.D. Anthopoulos, Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem. Commun. 49, 4154–4156 (2013)CrossRef P. Pattanasattayavong, G.O.N. Ndjawa, K. Zhao, K.W. Chou, N. Yaacobi-Gross, B.C. O’Regan, A. Amassian, T.D. Anthopoulos, Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem. Commun. 49, 4154–4156 (2013)CrossRef
313.
go back to reference S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723–3728 (2015)CrossRef S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723–3728 (2015)CrossRef
314.
go back to reference W.-Y. Chen, L.-L. Deng, S.-M. Dai, X. Wang, C.-B. Tian, X.-X. Zhan, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 3, 19353–19359 (2015)CrossRef W.-Y. Chen, L.-L. Deng, S.-M. Dai, X. Wang, C.-B. Tian, X.-X. Zhan, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 3, 19353–19359 (2015)CrossRef
315.
go back to reference H. Wang, Z. Yu, X. Jiang, J. Li, B. Cai, X. Yang, L. Sun, Efficient and stable inverted planar perovskite solar cells employing cui as hole-transporting layer prepared by solid-gas transformation. Energy Technol. 5, 1836–1843 (2017)CrossRef H. Wang, Z. Yu, X. Jiang, J. Li, B. Cai, X. Yang, L. Sun, Efficient and stable inverted planar perovskite solar cells employing cui as hole-transporting layer prepared by solid-gas transformation. Energy Technol. 5, 1836–1843 (2017)CrossRef
316.
go back to reference S. Ye, H. Rao, W. Yan, Y. Li, W. Sun, H. Peng, Z. Liu, Z. Bian, Y. Li, C. Huang, A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 28, 9648–9654 (2016)CrossRef S. Ye, H. Rao, W. Yan, Y. Li, W. Sun, H. Peng, Z. Liu, Z. Bian, Y. Li, C. Huang, A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 28, 9648–9654 (2016)CrossRef
317.
go back to reference W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, C. Huang, Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater. 6, 1600474 (2016)CrossRef W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, C. Huang, Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater. 6, 1600474 (2016)CrossRef
318.
go back to reference Q. Guo, C. Wang, J. Li, Y. Bai, F. Wang, L. Liu, B. Zhang, T. Hayat, A. Alsaedi, Z.A. Tan, Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells. Phys. Chem. Chem. Phys. 20, 21746–21754 (2018)CrossRef Q. Guo, C. Wang, J. Li, Y. Bai, F. Wang, L. Liu, B. Zhang, T. Hayat, A. Alsaedi, Z.A. Tan, Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells. Phys. Chem. Chem. Phys. 20, 21746–21754 (2018)CrossRef
319.
go back to reference C.X. Guo, K. Sun, J. Ouyang, X. Lu, Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process. Chem. Mater. 27, 5813–5819 (2015)CrossRef C.X. Guo, K. Sun, J. Ouyang, X. Lu, Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process. Chem. Mater. 27, 5813–5819 (2015)CrossRef
320.
go back to reference F. Hou, Z. Su, F. Jin, X. Yan, L. Wang, H. Zhao, J. Zhu, B. Chu, W. Li, Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7, 9427–9432 (2015)CrossRef F. Hou, Z. Su, F. Jin, X. Yan, L. Wang, H. Zhao, J. Zhu, B. Chu, W. Li, Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7, 9427–9432 (2015)CrossRef
321.
go back to reference C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, W. Chen, Role of tungsten oxide in inverted polymer solar cells. Appl. Phys. Lett. 94, 043311 (2009)CrossRef C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, W. Chen, Role of tungsten oxide in inverted polymer solar cells. Appl. Phys. Lett. 94, 043311 (2009)CrossRef
322.
go back to reference K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, T. Ma, Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells. J. Phys. Chem. Lett. 6, 755–759 (2015)CrossRef K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, T. Ma, Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells. J. Phys. Chem. Lett. 6, 755–759 (2015)CrossRef
Metadata
Title
Photon-Responsive Nanomaterials for Solar Cells
Authors
Vincent Tiing Tiong
Hongxia Wang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39994-8_1