Skip to main content
Top

2022 | OriginalPaper | Chapter

4. Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation (sTTA) in Solids

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The conversion of low-energy photons into radiation of higher energy is useful for bioimaging, 3D displays and other applications. In particular, upconversion of the infrared portion of the solar spectrum, which is typically not absorbed by the light-harvesting materials used in solar technologies, allows additional photons to be harnessed and boosts the efficiency of photovoltaic and photocatalytic devices. Therefore, low power photon upconversion of non-coherent light based on sensitized triplet-triplet annihilation (sTTA) has been recently recognized as a potential viable approach towards enhancing the efficiency of sunlight-powered devices through sub-bandgap photon harvesting.
The sTTA permits the conversion of light into radiation of higher energy involving a sequence of photophysical processes between two moieties, respectively a light harvester/triplet sensitizer and an annihilator/emitter. High up-conversion yields under solar irradiance can be observed in low viscosity solutions of dyes, but in solid materials, which are better suited for integration in devices, the process is usually less efficient. The ability to control triplet excitons in the solid state is therefore crucial to obtain high performance solid upconverters. In this chapter, we will discuss the results obtained in several systems, such as dye-doped polymers/nanoparticles, amorphous/crystalline supramolecular structures and many others, highlighting the materials design guidelines to obtain efficient upconverters at the solid state that can match the strict requirements of solar technologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference F. Perrin, Law governing the diminution of fluorescent power as a function of concentration. Compt. Rend. 178, 1978–1980 (1924) F. Perrin, Law governing the diminution of fluorescent power as a function of concentration. Compt. Rend. 178, 1978–1980 (1924)
10.
go back to reference M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press on Demand, New York, 1999) M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press on Demand, New York, 1999)
11.
go back to reference L. Stryer, D.D. Thomas, C.F. Meares, Diffusion-enhanced fluorescence energy transfer. Annu. Rev. Biophys. Bioeng. 11(1), 203–222 (1982)CrossRef L. Stryer, D.D. Thomas, C.F. Meares, Diffusion-enhanced fluorescence energy transfer. Annu. Rev. Biophys. Bioeng. 11(1), 203–222 (1982)CrossRef
18.
go back to reference Y.C. Simon, C. Weder, Low-power photon upconversion through triplet–triplet annihilation in polymers. J. Mater. Chem. 22(39), 20817–20830 (2012)CrossRef Y.C. Simon, C. Weder, Low-power photon upconversion through triplet–triplet annihilation in polymers. J. Mater. Chem. 22(39), 20817–20830 (2012)CrossRef
22.
go back to reference A. Monguzzi, A. Oertel, D. Braga, A. Riedinger, D.K. Kim, P.N. Knüsel, A. Bianchi, M. Mauri, R. Simonutti, D.J. Norris, F. Meinardi, Photocatalytic water-splitting enhancement by sub-bandgap photon harvesting. ACS Appl. Mater. Interfaces 9(46), 40180–40186 (2017). https://doi.org/10.1021/acsami.7b10829 CrossRef A. Monguzzi, A. Oertel, D. Braga, A. Riedinger, D.K. Kim, P.N. Knüsel, A. Bianchi, M. Mauri, R. Simonutti, D.J. Norris, F. Meinardi, Photocatalytic water-splitting enhancement by sub-bandgap photon harvesting. ACS Appl. Mater. Interfaces 9(46), 40180–40186 (2017). https://​doi.​org/​10.​1021/​acsami.​7b10829 CrossRef
23.
go back to reference A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560 (1905)CrossRef A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560 (1905)CrossRef
24.
go back to reference M. Von Smoluchowski, Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann. Phys. 326(14), 756–780 (1906)CrossRef M. Von Smoluchowski, Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann. Phys. 326(14), 756–780 (1906)CrossRef
27.
go back to reference P. Duan, N. Yanai, H. Nagatomi, N. Kimizuka, Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor–acceptor arrays in nanofibers and acquired air stability. J. Am. Chem. Soc. 137(5), 1887–1894 (2015). https://doi.org/10.1021/ja511061h CrossRef P. Duan, N. Yanai, H. Nagatomi, N. Kimizuka, Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor–acceptor arrays in nanofibers and acquired air stability. J. Am. Chem. Soc. 137(5), 1887–1894 (2015). https://​doi.​org/​10.​1021/​ja511061h CrossRef
29.
go back to reference K. Kamada, Y. Sakagami, T. Mizokuro, Y. Fujiwara, K. Kobayashi, K. Narushima, S. Hirata, M. Vacha, Efficient triplet–triplet annihilation upconversion in binary crystalline solids fabricated via solution casting and operated in air. Materials Horizons 4(1), 83–87 (2017)CrossRef K. Kamada, Y. Sakagami, T. Mizokuro, Y. Fujiwara, K. Kobayashi, K. Narushima, S. Hirata, M. Vacha, Efficient triplet–triplet annihilation upconversion in binary crystalline solids fabricated via solution casting and operated in air. Materials Horizons 4(1), 83–87 (2017)CrossRef
30.
go back to reference A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys. 14(13), 4322–4332 (2012)CrossRef A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys. 14(13), 4322–4332 (2012)CrossRef
32.
go back to reference H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks (ACS Publications, 2012)CrossRef H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks (ACS Publications, 2012)CrossRef
35.
go back to reference J. Perego, J. Pedrini, C.X. Bezuidenhout, P.E. Sozzani, F. Meinardi, S. Bracco, A. Comotti, A. Monguzzi, Engineering porous emitting framework nanoparticles with integrated sensitizers for low-power photon upconversion by triplet fusion. Adv. Mater. 31(40), 1903309 (2019)CrossRef J. Perego, J. Pedrini, C.X. Bezuidenhout, P.E. Sozzani, F. Meinardi, S. Bracco, A. Comotti, A. Monguzzi, Engineering porous emitting framework nanoparticles with integrated sensitizers for low-power photon upconversion by triplet fusion. Adv. Mater. 31(40), 1903309 (2019)CrossRef
36.
go back to reference R.R. Islangulov, J. Lott, C. Weder, F.N. Castellano, Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 129(42), 12652–12653 (2007)CrossRef R.R. Islangulov, J. Lott, C. Weder, F.N. Castellano, Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 129(42), 12652–12653 (2007)CrossRef
38.
go back to reference M. Wu, D.N. Congreve, M.W. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 10(1), 31–34 (2016)CrossRef M. Wu, D.N. Congreve, M.W. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 10(1), 31–34 (2016)CrossRef
39.
go back to reference A. Monguzzi, M. Mauri, M. Frigoli, J. Pedrini, R. Simonutti, C. Larpent, G. Vaccaro, M. Sassi, F. Meinardi, Unraveling triplet excitons photophysics in hyper-cross-linked polymeric nanoparticles: toward the next generation of solid-state upconverting materials. J. Phys. Chem. Lett. 7(14), 2779–2785 (2016). https://doi.org/10.1021/acs.jpclett.6b01115 CrossRef A. Monguzzi, M. Mauri, M. Frigoli, J. Pedrini, R. Simonutti, C. Larpent, G. Vaccaro, M. Sassi, F. Meinardi, Unraveling triplet excitons photophysics in hyper-cross-linked polymeric nanoparticles: toward the next generation of solid-state upconverting materials. J. Phys. Chem. Lett. 7(14), 2779–2785 (2016). https://​doi.​org/​10.​1021/​acs.​jpclett.​6b01115 CrossRef
40.
go back to reference O.S. Kwon, J.-H. Kim, J.K. Cho, J.-H. Kim, Triplet–triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl. Mater. Interfaces 7(1), 318–325 (2015)CrossRef O.S. Kwon, J.-H. Kim, J.K. Cho, J.-H. Kim, Triplet–triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl. Mater. Interfaces 7(1), 318–325 (2015)CrossRef
41.
go back to reference S.N. Sanders, M.K. Gangishetty, M.Y. Sfeir, D.N. Congreve, Photon upconversion in aqueous nanodroplets. J. Am. Chem. Soc. 141(23), 9180–9184 (2019)CrossRef S.N. Sanders, M.K. Gangishetty, M.Y. Sfeir, D.N. Congreve, Photon upconversion in aqueous nanodroplets. J. Am. Chem. Soc. 141(23), 9180–9184 (2019)CrossRef
42.
go back to reference R. Vadrucci, A. Monguzzi, F. Saenz, B.D. Wilts, Y.C. Simon, C. Weder, Nanodroplet-containing polymers for efficient low-power light upconversion. Adv. Mater. 29(41), 1702992 (2017)CrossRef R. Vadrucci, A. Monguzzi, F. Saenz, B.D. Wilts, Y.C. Simon, C. Weder, Nanodroplet-containing polymers for efficient low-power light upconversion. Adv. Mater. 29(41), 1702992 (2017)CrossRef
43.
go back to reference C. Wohnhaas, K. Friedemann, D. Busko, K. Landfester, S. Baluschev, D. Crespy, A. Turshatov, All organic nanofibers as ultralight versatile support for triplet–triplet annihilation upconversion. ACS Macro Lett. 2(5), 446–450 (2013)CrossRef C. Wohnhaas, K. Friedemann, D. Busko, K. Landfester, S. Baluschev, D. Crespy, A. Turshatov, All organic nanofibers as ultralight versatile support for triplet–triplet annihilation upconversion. ACS Macro Lett. 2(5), 446–450 (2013)CrossRef
44.
go back to reference Y.Y. Cheng, B. Fückel, T. Khoury, R.G. Clady, M.J. Tayebjee, N. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Kinetic analysis of photochemical upconversion by triplet−triplet annihilation: beyond any spin statistical limit. J. Phys. Chem. Lett. 1(12), 1795–1799 (2010)CrossRef Y.Y. Cheng, B. Fückel, T. Khoury, R.G. Clady, M.J. Tayebjee, N. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Kinetic analysis of photochemical upconversion by triplet−triplet annihilation: beyond any spin statistical limit. J. Phys. Chem. Lett. 1(12), 1795–1799 (2010)CrossRef
45.
go back to reference H. Najafov, B. Lee, Q. Zhou, L.C. Feldman, V. Podzorov, Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater. 9(11), 938–943 (2010)CrossRef H. Najafov, B. Lee, Q. Zhou, L.C. Feldman, V. Podzorov, Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater. 9(11), 938–943 (2010)CrossRef
46.
go back to reference S. Mattiello, A. Monguzzi, J. Pedrini, M. Sassi, C. Villa, Y. Torrente, R. Marotta, F. Meinardi, L. Beverina, Self-assembled dual dye-doped nanosized micelles for high-contrast up-conversion bioimaging. Adv. Funct. Mater. 26(46), 8447–8454 (2016)CrossRef S. Mattiello, A. Monguzzi, J. Pedrini, M. Sassi, C. Villa, Y. Torrente, R. Marotta, F. Meinardi, L. Beverina, Self-assembled dual dye-doped nanosized micelles for high-contrast up-conversion bioimaging. Adv. Funct. Mater. 26(46), 8447–8454 (2016)CrossRef
Metadata
Title
Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation (sTTA) in Solids
Author
Angelo Monguzzi
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-70358-5_4