Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

11. Photonic Crystal Fiber Pressure Sensors

Authors : Zhengyong Liu, Hwa-Yaw Tam

Published in: Computational Photonic Sensors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces photonic crystal fibers (PCFs) specifically designed for pressure sensors, including PCF fabrication to introduce birefringence and pressure sensor design incorporating the PCFs. Simulation and experimental results for pressure sensors incorporating two common principles, grating and interferometry, are presented. The flexibility of designing PCF microstructures means PCF pressure sensors with very high sensitivity and accuracy are relatively easily fabricated, compared with conventional methods based on single-mode fibers, microcavities, or electrical methods. Various PCF-based pressure sensor performances are compared. Pressure sensitivity varies with the employed principle, and we show that polarimetric techniques provide the highest sensitivity compared with other types. Higher sensor sensitivity and resolution allows for a large measurement dynamic range. The proposed novel pressure sensors will meet the increasing requirements and have many applications for pressure monitoring, e.g., oil industry and biomedical detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview. Sens. Actuators A Phys. 82, 40–61 (2000)CrossRef K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview. Sens. Actuators A Phys. 82, 40–61 (2000)CrossRef
2.
go back to reference H. Nakstad, J.T. Kringlebotn, Oil and Gas Applications: Probing oil fields. Nat. Photonics 2, 147–149 (2008)CrossRef H. Nakstad, J.T. Kringlebotn, Oil and Gas Applications: Probing oil fields. Nat. Photonics 2, 147–149 (2008)CrossRef
3.
go back to reference A.D. Kersey, Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry. IEICE Trans. Electron. 83, 400–404 (2000) A.D. Kersey, Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry. IEICE Trans. Electron. 83, 400–404 (2000)
5.
go back to reference M. Xu, L. Reekie, Y. Chow, J.P. Dakin, Optical in-fibre grating high pressure sensor. Electron. Lett. 29, 398–399 (1993)CrossRef M. Xu, L. Reekie, Y. Chow, J.P. Dakin, Optical in-fibre grating high pressure sensor. Electron. Lett. 29, 398–399 (1993)CrossRef
6.
go back to reference D. Song, Z. Wei, J. Zou, S. Yang, E. Du, H. Cui, Pressure sensor based on fiber Bragg grating and carbon fiber ribbon-wound composite cylindrical shell. Sensors (Peterborough, NH) 9, 828–831 (2009)CrossRef D. Song, Z. Wei, J. Zou, S. Yang, E. Du, H. Cui, Pressure sensor based on fiber Bragg grating and carbon fiber ribbon-wound composite cylindrical shell. Sensors (Peterborough, NH) 9, 828–831 (2009)CrossRef
7.
go back to reference P.M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, Reliability of fiber Bragg grating based sensors for downhole applications. Sens. Actuators A Phys. 103, 364–376 (2003)CrossRef P.M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, Reliability of fiber Bragg grating based sensors for downhole applications. Sens. Actuators A Phys. 103, 364–376 (2003)CrossRef
8.
go back to reference É. Pinet, Fabry-Pérot fiber-optic sensors for physical parameters measurement in challenging conditions. J Sens. 2009, 1–9 (2009)CrossRef É. Pinet, Fabry-Pérot fiber-optic sensors for physical parameters measurement in challenging conditions. J Sens. 2009, 1–9 (2009)CrossRef
9.
go back to reference S. Watson, M.J. Gander, W.N. MacPherson, J.S. Barton, J.D.C. Jones, T. Klotzbuecher, T. Braune, J. Ott, F. Schmitz, Laser-machined fibers as Fabry-Perot pressure sensors. Appl. Opt. 45, 5590–5596 (2006)CrossRef S. Watson, M.J. Gander, W.N. MacPherson, J.S. Barton, J.D.C. Jones, T. Klotzbuecher, T. Braune, J. Ott, F. Schmitz, Laser-machined fibers as Fabry-Perot pressure sensors. Appl. Opt. 45, 5590–5596 (2006)CrossRef
10.
go back to reference Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, J. Zhou, Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer. Opt. Express 23, 6673 (2015)CrossRef Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, J. Zhou, Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer. Opt. Express 23, 6673 (2015)CrossRef
11.
go back to reference H.Y. Fu, H.Y. Tam, L.-Y. Shao, X. Dong, P.K.A. Wai, C. Lu, S.K. Khijwania, Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 47, 2835–2839 (2008)CrossRef H.Y. Fu, H.Y. Tam, L.-Y. Shao, X. Dong, P.K.A. Wai, C. Lu, S.K. Khijwania, Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 47, 2835–2839 (2008)CrossRef
12.
go back to reference H.Y. Fu, C. Wu, M.L.V. Tse, L. Zhang, K.D. Cheng, H.Y. Tam, B. Guan, C. Lu, High pressure sensor based on photonic crystal fiber for downhole application. Appl. Opt. 49, 2639–2643 (2010)CrossRef H.Y. Fu, C. Wu, M.L.V. Tse, L. Zhang, K.D. Cheng, H.Y. Tam, B. Guan, C. Lu, High pressure sensor based on photonic crystal fiber for downhole application. Appl. Opt. 49, 2639–2643 (2010)CrossRef
13.
go back to reference A. Anuszkiewicz, G. Statkiewicz-Barabach, T. Borsukowski et al., Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements. Opt. Express 20, 23320 (2012)CrossRef A. Anuszkiewicz, G. Statkiewicz-Barabach, T. Borsukowski et al., Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements. Opt. Express 20, 23320 (2012)CrossRef
14.
go back to reference F.C. Fávero, S.M.M. Quintero, C. Martelli, A.M.B. Braga, V.V. Silva, I.C.S. Carvalho, R.W.A. Llerena, L.C.G. Valente, Hydrostatic pressure sensing with high birefringence photonic crystal fibers. Sensors 10, 9698–9711 (2010)CrossRef F.C. Fávero, S.M.M. Quintero, C. Martelli, A.M.B. Braga, V.V. Silva, I.C.S. Carvalho, R.W.A. Llerena, L.C.G. Valente, Hydrostatic pressure sensing with high birefringence photonic crystal fibers. Sensors 10, 9698–9711 (2010)CrossRef
15.
go back to reference E. Chmielewska, W. Urbańczyk, W.J. Bock, Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber. Appl. Opt. 42, 6284–6291 (2003)CrossRef E. Chmielewska, W. Urbańczyk, W.J. Bock, Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber. Appl. Opt. 42, 6284–6291 (2003)CrossRef
16.
go back to reference A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, W. Urbanczyk, Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence. Opt. Express 21, 12657 (2013)CrossRef A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, W. Urbanczyk, Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence. Opt. Express 21, 12657 (2013)CrossRef
17.
go back to reference J. Clowes, S. Syngellakis, M. Zervas, Pressure sensitivity of side-hole optical fiber sensors. Photonics Technol. Lett. IEEE 10, 857–859 (1998)CrossRef J. Clowes, S. Syngellakis, M. Zervas, Pressure sensitivity of side-hole optical fiber sensors. Photonics Technol. Lett. IEEE 10, 857–859 (1998)CrossRef
18.
go back to reference K. Naeem, B.H. Kim, B. Kim, Y. Chung, Simultaneous multi-parameter measurement using Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores. Opt. Express 23, 3589 (2015)CrossRef K. Naeem, B.H. Kim, B. Kim, Y. Chung, Simultaneous multi-parameter measurement using Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores. Opt. Express 23, 3589 (2015)CrossRef
19.
go back to reference T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski et al., Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure. Opt. Express 18, 15113–15121 (2010)CrossRef T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski et al., Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure. Opt. Express 18, 15113–15121 (2010)CrossRef
20.
go back to reference R. Kaul, Pressure sensitivity of rocking filters fabricated in an elliptical-core optical fiber. Opt. Lett. 20, 1000–1001 (1995)CrossRef R. Kaul, Pressure sensitivity of rocking filters fabricated in an elliptical-core optical fiber. Opt. Lett. 20, 1000–1001 (1995)CrossRef
21.
go back to reference L. Teng, H. Zhang, Y. Dong, D. Zhou, T. Jiang, W. Gao, Z. Lu, L. Chen, X. Bao, Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings. Opt. Lett. 41, 4413–4416 (2016)CrossRef L. Teng, H. Zhang, Y. Dong, D. Zhou, T. Jiang, W. Gao, Z. Lu, L. Chen, X. Bao, Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings. Opt. Lett. 41, 4413–4416 (2016)CrossRef
22.
go back to reference M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, P. Lu, Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing. Opt. Express 24, 27890 (2016)CrossRef M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, P. Lu, Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing. Opt. Express 24, 27890 (2016)CrossRef
23.
go back to reference J.-Y. Huang, J. Van Roosbroeck, J. Vlekken, A.B. Martinez, T. Geernaert, F. Berghmans, B. Van Hoe, E. Lindner, C. Caucheteur, FBGs written in specialty fiber for high pressure/high temperature measurement. Opt. Express 25, 17936 (2017)CrossRef J.-Y. Huang, J. Van Roosbroeck, J. Vlekken, A.B. Martinez, T. Geernaert, F. Berghmans, B. Van Hoe, E. Lindner, C. Caucheteur, FBGs written in specialty fiber for high pressure/high temperature measurement. Opt. Express 25, 17936 (2017)CrossRef
24.
25.
go back to reference S.T. Philip, J. Russell, Photonic-crystal fibers. J Light Technol 24, 4729–4749 (2006) S.T. Philip, J. Russell, Photonic-crystal fibers. J Light Technol 24, 4729–4749 (2006)
26.
27.
go back to reference O. Frazão, J.L. Santos, F.M. Araújo, L.A. Ferreira, Optical sensing with photonic crystal fibers. Laser Photon Rev. 2, 449–459 (2008)CrossRef O. Frazão, J.L. Santos, F.M. Araújo, L.A. Ferreira, Optical sensing with photonic crystal fibers. Laser Photon Rev. 2, 449–459 (2008)CrossRef
28.
go back to reference A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 2012, 1–21 (2012)CrossRef A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 2012, 1–21 (2012)CrossRef
29.
go back to reference T.A. Birks, J.C. Knight, P.S. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)CrossRef T.A. Birks, J.C. Knight, P.S. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)CrossRef
30.
go back to reference J. Knight, T. Birks, P. Russell, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)CrossRef J. Knight, T. Birks, P. Russell, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)CrossRef
31.
go back to reference G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, B. Mangan, Hollow core photonic crystal fibers for beam delivery. Opt. Express 12, 1477–1484 (2004)CrossRef G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, B. Mangan, Hollow core photonic crystal fibers for beam delivery. Opt. Express 12, 1477–1484 (2004)CrossRef
32.
go back to reference C. Wu, B.-O. Guan, Z. Wang, X. Feng, Characterization of pressure response of bragg gratings in grapefruit microstructured fibers. J. Light Technol. 28, 1392–1397 (2010)CrossRef C. Wu, B.-O. Guan, Z. Wang, X. Feng, Characterization of pressure response of bragg gratings in grapefruit microstructured fibers. J. Light Technol. 28, 1392–1397 (2010)CrossRef
33.
go back to reference V.V.R. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, A. Taylor, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10, 1520–1525 (2002)CrossRef V.V.R. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, A. Taylor, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10, 1520–1525 (2002)CrossRef
34.
go back to reference A. Argyros, M.A. van Eijkelenborg, M.C. Large, I.M. Bassett, Hollow-core microstructured polymer optical fiber. Opt. Lett. 31, 172–174 (2006)CrossRef A. Argyros, M.A. van Eijkelenborg, M.C. Large, I.M. Bassett, Hollow-core microstructured polymer optical fiber. Opt. Lett. 31, 172–174 (2006)CrossRef
35.
go back to reference M.H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, P.S.J. Russell, Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss. Opt. Lett. 38, 2215–2217 (2013)CrossRef M.H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, P.S.J. Russell, Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss. Opt. Lett. 38, 2215–2217 (2013)CrossRef
36.
go back to reference J. Laegsgaard, A. Bjarklev, Microstructured optical fibers-fundamentals and applications. J. Am. Ceram. Soc. 89, 2–12 (2006)CrossRef J. Laegsgaard, A. Bjarklev, Microstructured optical fibers-fundamentals and applications. J. Am. Ceram. Soc. 89, 2–12 (2006)CrossRef
37.
go back to reference Z. Liu, C. Wu, M.-L.V. Tse, H.-Y. Tam, Fabrication, characterization, and sensing applications of a high-birefringence suspended-core fiber. J. Light Technol. 32, 2113–2122 (2014)CrossRef Z. Liu, C. Wu, M.-L.V. Tse, H.-Y. Tam, Fabrication, characterization, and sensing applications of a high-birefringence suspended-core fiber. J. Light Technol. 32, 2113–2122 (2014)CrossRef
38.
go back to reference A. Ortigosa-Blanch, J. Knight, W. Wadsworth, Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)CrossRef A. Ortigosa-Blanch, J. Knight, W. Wadsworth, Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)CrossRef
39.
go back to reference K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita, Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 9, 676–680 (2001)CrossRef K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita, Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 9, 676–680 (2001)CrossRef
40.
go back to reference Z. Liu, C. Wu, M.-L.V. Tse, C. Lu, H.-Y. Tam, Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination. Opt. Lett. 38, 1385–1387 (2013)CrossRef Z. Liu, C. Wu, M.-L.V. Tse, C. Lu, H.-Y. Tam, Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination. Opt. Lett. 38, 1385–1387 (2013)CrossRef
41.
go back to reference C. Wu, J. Li, X. Feng, B.O. Guan, H.Y. Tam, Side-hole photonic crystal fiber with ultrahigh polarimetric pressure sensitivity. J Light Technol. 29, 943–948 (2011)CrossRef C. Wu, J. Li, X. Feng, B.O. Guan, H.Y. Tam, Side-hole photonic crystal fiber with ultrahigh polarimetric pressure sensitivity. J Light Technol. 29, 943–948 (2011)CrossRef
42.
go back to reference K. Chah, N. Linze, C. Caucheteur et al., Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber. Appl. Opt. 51, 6130–6138 (2012)CrossRef K. Chah, N. Linze, C. Caucheteur et al., Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber. Appl. Opt. 51, 6130–6138 (2012)CrossRef
43.
go back to reference D. Chen, M.L. Vincent Tse, H.Y. Tam, Super-lattice structure photonic crystal fiber. Prog. Electromagn. Res. M 11, 53–64 (2010)CrossRef D. Chen, M.L. Vincent Tse, H.Y. Tam, Super-lattice structure photonic crystal fiber. Prog. Electromagn. Res. M 11, 53–64 (2010)CrossRef
44.
go back to reference M.-L.V. Tse, Z. Liu, L.-H. Cho, C. Lu, P.-K.A. Wai, H. Tam, Superlattice microstructured optical fiber. Mater. (Basel) 7, 4567–4573 (2014)CrossRef M.-L.V. Tse, Z. Liu, L.-H. Cho, C. Lu, P.-K.A. Wai, H. Tam, Superlattice microstructured optical fiber. Mater. (Basel) 7, 4567–4573 (2014)CrossRef
45.
go back to reference Y. Yue, G. Kai, Z. Wang et al., Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt. Lett. 32, 469–471 (2007)CrossRef Y. Yue, G. Kai, Z. Wang et al., Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt. Lett. 32, 469–471 (2007)CrossRef
46.
go back to reference F. Beltrán-Mejía, G. Chesini, E. Silvestre, A.K. George, J.C. Knight, C.M.B. Cordeiro, Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes. Opt. Lett. 35, 544–546 (2010)CrossRef F. Beltrán-Mejía, G. Chesini, E. Silvestre, A.K. George, J.C. Knight, C.M.B. Cordeiro, Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes. Opt. Lett. 35, 544–546 (2010)CrossRef
47.
go back to reference N.A. Issa, M.A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, M.C.J. Large, Fabrication and study of microstructured optical fibers with elliptical holes. Opt. Lett. 29, 1336–8 (2004)CrossRef N.A. Issa, M.A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, M.C.J. Large, Fabrication and study of microstructured optical fibers with elliptical holes. Opt. Lett. 29, 1336–8 (2004)CrossRef
48.
go back to reference T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, H. Simonsen, Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technol Lett 13, 588–590 (2001)CrossRef T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, H. Simonsen, Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technol Lett 13, 588–590 (2001)CrossRef
49.
go back to reference W. Urbanczyk, T. Martynkien, W.J. Bock, Dispersion effects in elliptical-core highly birefringent fibers. Appl. Opt. 40, 1911–1920 (2001)CrossRef W. Urbanczyk, T. Martynkien, W.J. Bock, Dispersion effects in elliptical-core highly birefringent fibers. Appl. Opt. 40, 1911–1920 (2001)CrossRef
50.
go back to reference K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview. J. Light Technol. 15, 1263–1276 (1997)CrossRef K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview. J. Light Technol. 15, 1263–1276 (1997)CrossRef
51.
go back to reference N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, J. Zagari, Bragg gratings in air-silica structured fibers. Opt. Lett. 28, 233–235 (2003)CrossRef N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, J. Zagari, Bragg gratings in air-silica structured fibers. Opt. Lett. 28, 233–235 (2003)CrossRef
52.
go back to reference C.M. Jewart, Q. Wang, J. Canning, D. Grobnic, S.J. Mihailov, K.P. Chen, Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 35, 1443–1445 (2010)CrossRef C.M. Jewart, Q. Wang, J. Canning, D. Grobnic, S.J. Mihailov, K.P. Chen, Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 35, 1443–1445 (2010)CrossRef
53.
go back to reference A.D. Yablon, Optical and mechanical effects of frozen-in stresses and strains in optical fibers. IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004)CrossRef A.D. Yablon, Optical and mechanical effects of frozen-in stresses and strains in optical fibers. IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004)CrossRef
54.
go back to reference W. Primak, D. Post, Photoelastic constants of vitreous silica and its elastic coefficient of refractive index. J. Appl. Phys. 30, 779 (1959)CrossRef W. Primak, D. Post, Photoelastic constants of vitreous silica and its elastic coefficient of refractive index. J. Appl. Phys. 30, 779 (1959)CrossRef
55.
go back to reference L. Htein, Z. Liu, H.-Y. Tam, Hydrostatic pressure sensor based on fiber Bragg grating written in single-ring suspended fiber, in Proceedings of the SPIE 9916, Sixth Eur Work Opt Fibre Sensors 99161R (2016) L. Htein, Z. Liu, H.-Y. Tam, Hydrostatic pressure sensor based on fiber Bragg grating written in single-ring suspended fiber, in Proceedings of the SPIE 9916, Sixth Eur Work Opt Fibre Sensors 99161R (2016)
56.
go back to reference G. Liu, Q. Sheng, W. Hou, M. Han, High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities. Opt. Lett. 41, 5134 (2016)CrossRef G. Liu, Q. Sheng, W. Hou, M. Han, High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities. Opt. Lett. 41, 5134 (2016)CrossRef
57.
go back to reference F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, B. Yu, High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm. Opt. Lett. 37, 133 (2012)CrossRef F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, B. Yu, High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm. Opt. Lett. 37, 133 (2012)CrossRef
58.
go back to reference Y.O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J.L. Cruz, M.V. Andrés, Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Opt. Express 14, 6394–6399 (2006)CrossRef Y.O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J.L. Cruz, M.V. Andrés, Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Opt. Express 14, 6394–6399 (2006)CrossRef
59.
go back to reference C. Wu, H.Y. Fu, K.K. Qureshi, B.-O. Guan, H.Y. Tam, High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Opt. Lett. 36, 412–414 (2011)CrossRef C. Wu, H.Y. Fu, K.K. Qureshi, B.-O. Guan, H.Y. Tam, High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Opt. Lett. 36, 412–414 (2011)CrossRef
60.
go back to reference W. Zhou, W.C. Wong, C.C. Chan, L.-Y. Shao, X. Dong, Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer. Appl. Opt. 50, 3087–3092 (2011)CrossRef W. Zhou, W.C. Wong, C.C. Chan, L.-Y. Shao, X. Dong, Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer. Appl. Opt. 50, 3087–3092 (2011)CrossRef
61.
go back to reference Z. Liu, M.-L.V. Tse, C. Wu, D. Chen, C. Lu, H.-Y. Tam, Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor. Opt. Express 20, 21749–21757 (2012)CrossRef Z. Liu, M.-L.V. Tse, C. Wu, D. Chen, C. Lu, H.-Y. Tam, Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor. Opt. Express 20, 21749–21757 (2012)CrossRef
62.
go back to reference Y. Wang, M. Yang, D.N. Wang, S. Liu, P. Lu, Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. J. Opt. Soc. Am. B 27, 370–374 (2010)CrossRef Y. Wang, M. Yang, D.N. Wang, S. Liu, P. Lu, Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. J. Opt. Soc. Am. B 27, 370–374 (2010)CrossRef
63.
go back to reference H.Y. Choi, M.J. Kim, B.H. Lee, All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 15, 5711–5720 (2007)CrossRef H.Y. Choi, M.J. Kim, B.H. Lee, All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 15, 5711–5720 (2007)CrossRef
64.
go back to reference B. Guan, D. Chen, Y. Zhang, Bragg gratings in pure-silica polarization-maintaining photonic crystal fiber. Photonics Technol. Lett. IEEE 20, 1980–1982 (2008)CrossRef B. Guan, D. Chen, Y. Zhang, Bragg gratings in pure-silica polarization-maintaining photonic crystal fiber. Photonics Technol. Lett. IEEE 20, 1980–1982 (2008)CrossRef
65.
go back to reference T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, K.P. Chen, Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 36, 3542–3544 (2011)CrossRef T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, K.P. Chen, Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 36, 3542–3544 (2011)CrossRef
66.
go back to reference W.J. Bock, J. Chen, P. Mikulic, T. Eftimov, M. Korwin-Pawlowski, Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. Meas. Sci. Technol. 18, 3098–3102 (2007)CrossRef W.J. Bock, J. Chen, P. Mikulic, T. Eftimov, M. Korwin-Pawlowski, Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. Meas. Sci. Technol. 18, 3098–3102 (2007)CrossRef
67.
go back to reference S.H. Aref, M.I. Zibaii, M. Kheiri et al., Pressure and temperature characterization of two interferometric configurations based on suspended-core fibers. Opt. Commun. 285, 269–273 (2012)CrossRef S.H. Aref, M.I. Zibaii, M. Kheiri et al., Pressure and temperature characterization of two interferometric configurations based on suspended-core fibers. Opt. Commun. 285, 269–273 (2012)CrossRef
68.
go back to reference G. Statkiewicz-Barabach, A. Anuszkiewicz, W. Urbanczyk, J. Wojcik, Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer. Opt. Express 16, 17258–17268 (2008)CrossRef G. Statkiewicz-Barabach, A. Anuszkiewicz, W. Urbanczyk, J. Wojcik, Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer. Opt. Express 16, 17258–17268 (2008)CrossRef
69.
go back to reference W.J. Bock, A.W. Domański, T.R. Woliński Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers. Appl. Opt. 29 3484–8 (1990)CrossRef W.J. Bock, A.W. Domański, T.R. Woliński Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers. Appl. Opt. 29 3484–8 (1990)CrossRef
70.
go back to reference X. Qiao, Z. Shao, W. Bao, Q. Rong, Fiber bragg grating sensors for the oil industry. Sensors 17, 429 (2017)CrossRef X. Qiao, Z. Shao, W. Bao, Q. Rong, Fiber bragg grating sensors for the oil industry. Sensors 17, 429 (2017)CrossRef
71.
go back to reference P. Roriz, O. Frazão, A.B. Lobo-Ribeiro, J.L. Santos, J.A. Simões, Review of fiber-optic pressure sensors for biomedical and biomechanical applications. J. Biomed. Opt. 18, 50903 (2013)CrossRef P. Roriz, O. Frazão, A.B. Lobo-Ribeiro, J.L. Santos, J.A. Simões, Review of fiber-optic pressure sensors for biomedical and biomechanical applications. J. Biomed. Opt. 18, 50903 (2013)CrossRef
Metadata
Title
Photonic Crystal Fiber Pressure Sensors
Authors
Zhengyong Liu
Hwa-Yaw Tam
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-76556-3_11