Skip to main content
Top
Published in:

28-07-2023

Physical and Mechanical Properties of a Tungsten-Titanium-Cobalt Alloy Produced by Spark Plasma Sintering of Hard-Alloy Electroerosive Powders Produced in Kerosene

Authors: E. V. Ageev, E. V. Ageeva, A. E. Ageeva, V. I. Serebrovski

Published in: Metallurgist | Issue 3-4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article considers the issues of manufacturing a tungsten-titanium-cobalt alloy produced by spark plasma sintering of hard-alloy electroerosive powders under conditions of rapid heating and short working cycle time. It is noted that the use of the method of spark plasma sintering of powder produced by electroerosive dispersion of the T5K10 alloy allows producing a tungsten-titanium-cobalt hard alloy with improved physical and mechanical properties without a significant increase in the cost of its manufacture and ensuring high performance of products due to their favorable structure and low porosity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. I. Bogodukhov, A. S. Kilov, E. S. Kozik, et al., “Improving the wear resistance of the T5K10 alloy,” Vestn. Orenburg. Gos. Univ., No. 10 (116), 127–130 (2010). S. I. Bogodukhov, A. S. Kilov, E. S. Kozik, et al., “Improving the wear resistance of the T5K10 alloy,” Vestn. Orenburg. Gos. Univ., No. 10 (116), 127–130 (2010).
2.
go back to reference M. I. Dvornik and A. V. Zaitsev, “Variation in strength, hardness, and fracture toughness in transition from medium-grained to ultrafine hard alloy,” Russ. J. Non-Ferr. Met., 59, No. 5, 563–569 (2018).CrossRef M. I. Dvornik and A. V. Zaitsev, “Variation in strength, hardness, and fracture toughness in transition from medium-grained to ultrafine hard alloy,” Russ. J. Non-Ferr. Met., 59, No. 5, 563–569 (2018).CrossRef
3.
go back to reference M. I. Dvornik and E. A. Mikhailenko, “Using the carbon deficiency to create a gradient nanostructured hard alloy,” Byull. Nauch. Soobshch., No. 23, 22–27 (2018). M. I. Dvornik and E. A. Mikhailenko, “Using the carbon deficiency to create a gradient nanostructured hard alloy,” Byull. Nauch. Soobshch., No. 23, 22–27 (2018).
4.
go back to reference I. A. Pinakhin, V. A. Chernigovskii, A. A. Bratsikhin, and M. A. Yagmurov, “Improving the wear resistance of VK6, VK8, T5K10, and T15K6 hard alloys by volume pulsed laser hardening,” Trenie Iznos, 36, No. 4, 429–432 (2015). I. A. Pinakhin, V. A. Chernigovskii, A. A. Bratsikhin, and M. A. Yagmurov, “Improving the wear resistance of VK6, VK8, T5K10, and T15K6 hard alloys by volume pulsed laser hardening,” Trenie Iznos, 36, No. 4, 429–432 (2015).
5.
go back to reference I. A. Pinakhin, V. A. Chernigovskii, A. A. Bratsikhin, et al., “Complex study of physical and mechanical properties of VK6, VK8, and T5K10 hard alloys subjected to volumetric pulsed laser hardening,” Zavodsk. Labor. Diagnost. Mater., 83, No. 3, 37–40 (2017). I. A. Pinakhin, V. A. Chernigovskii, A. A. Bratsikhin, et al., “Complex study of physical and mechanical properties of VK6, VK8, and T5K10 hard alloys subjected to volumetric pulsed laser hardening,” Zavodsk. Labor. Diagnost. Mater., 83, No. 3, 37–40 (2017).
6.
go back to reference V. V. Uglov, A. K. Kuleshov, G. E. Remnev, and M. S. Saltymakov, “Modification of hard alloy by the action of high power ion beams,” Surf. Coat. Tech., 206, No. 5, 781–784 (2011).CrossRef V. V. Uglov, A. K. Kuleshov, G. E. Remnev, and M. S. Saltymakov, “Modification of hard alloy by the action of high power ion beams,” Surf. Coat. Tech., 206, No. 5, 781–784 (2011).CrossRef
7.
go back to reference A. K. Kuleshov, V. V. Khodasevich, V. V. Uglov, et al., “Thermal stability of surface layers of titanium and chromium nitrides formed by condensation with ion bombardment on a solid T5K10 alloy,” Perspekt. Mater., No. 2, 68–73 (2009). A. K. Kuleshov, V. V. Khodasevich, V. V. Uglov, et al., “Thermal stability of surface layers of titanium and chromium nitrides formed by condensation with ion bombardment on a solid T5K10 alloy,” Perspekt. Mater., No. 2, 68–73 (2009).
8.
go back to reference E. V. Dudkin and S. G. Postupaeva, “Quality of a hard alloy and instrumental support for automated production,” Izv. Volgograd. Gos. Tekh. Univ., No. 9 (47), 72–75 (2008). E. V. Dudkin and S. G. Postupaeva, “Quality of a hard alloy and instrumental support for automated production,” Izv. Volgograd. Gos. Tekh. Univ., No. 9 (47), 72–75 (2008).
9.
go back to reference Y. I. Gordeev and A. K. Abkaryan, “Improving hard-alloy strength and tool life by thermomechanical treatment,” Russ. Eng. Res., 33, No. 10, 611–614 (2013).CrossRef Y. I. Gordeev and A. K. Abkaryan, “Improving hard-alloy strength and tool life by thermomechanical treatment,” Russ. Eng. Res., 33, No. 10, 611–614 (2013).CrossRef
10.
go back to reference A. Tyurin, S. Nagavkin, A. Malikov, and A. Orishich, “Microstructure of WC-Co hard alloy surface after laser treatment,” Surf. Eng., 31, No. 1, 74–77 (2015).CrossRef A. Tyurin, S. Nagavkin, A. Malikov, and A. Orishich, “Microstructure of WC-Co hard alloy surface after laser treatment,” Surf. Eng., 31, No. 1, 74–77 (2015).CrossRef
11.
go back to reference E. N. Avdeenko, E. I. Zamulaeva, A. A. Zaitsev, et al., “Structure and properties of coarse-grained WC–Co hard alloys with extra homogeneous microstructure,” Izv. VUZ. Tsvet. Metallurg., No. 4, 70–78 (2019). E. N. Avdeenko, E. I. Zamulaeva, A. A. Zaitsev, et al., “Structure and properties of coarse-grained WC–Co hard alloys with extra homogeneous microstructure,” Izv. VUZ. Tsvet. Metallurg., No. 4, 70–78 (2019).
12.
go back to reference V. A. Bystrov, “Efficiency of hardening of metallurgical equipment spare parts by hard alloy,” Izv. VUZ. Chern. Metallurg., 61, No. 12, 939–947 (2018). V. A. Bystrov, “Efficiency of hardening of metallurgical equipment spare parts by hard alloy,” Izv. VUZ. Chern. Metallurg., 61, No. 12, 939–947 (2018).
13.
go back to reference E. V. Ageev, “Production, research and practical application of wear-resistant powder materials from waste products of tungsten-containing hard alloys,” Tekhnol. Metal., No. 9, 36–44 (2012). E. V. Ageev, “Production, research and practical application of wear-resistant powder materials from waste products of tungsten-containing hard alloys,” Tekhnol. Metal., No. 9, 36–44 (2012).
14.
go back to reference E. V. Ageev, R. A. Latypov, and A. S. Ugrimov, “Metallurgical features of the manufacture of hard-alloy powders by electroerosive dispersion of a T15K6 alloy in butanol,” Russ. Metall., 50, No. 1, 1155–1157 (2016).CrossRef E. V. Ageev, R. A. Latypov, and A. S. Ugrimov, “Metallurgical features of the manufacture of hard-alloy powders by electroerosive dispersion of a T15K6 alloy in butanol,” Russ. Metall., 50, No. 1, 1155–1157 (2016).CrossRef
15.
go back to reference E. V. Ageev and R. A. Latypov, “Fabrication and investigation of carbide billets from powders prepared by electroerosive dispersion of tungsten-containing wastes,” Russ. J. Non-Ferr. Met., 55, No. 6, 577–580 (2014).CrossRef E. V. Ageev and R. A. Latypov, “Fabrication and investigation of carbide billets from powders prepared by electroerosive dispersion of tungsten-containing wastes,” Russ. J. Non-Ferr. Met., 55, No. 6, 577–580 (2014).CrossRef
16.
go back to reference E. V. Ageev and A. E. Ageeva, “Composition, structure and properties of hard-alloy powders obtained by electrodispersion of T5K10 alloy in water,” Metallurgist, 66, No. 1-2, 146–154 (2022).CrossRef E. V. Ageev and A. E. Ageeva, “Composition, structure and properties of hard-alloy powders obtained by electrodispersion of T5K10 alloy in water,” Metallurgist, 66, No. 1-2, 146–154 (2022).CrossRef
Metadata
Title
Physical and Mechanical Properties of a Tungsten-Titanium-Cobalt Alloy Produced by Spark Plasma Sintering of Hard-Alloy Electroerosive Powders Produced in Kerosene
Authors
E. V. Ageev
E. V. Ageeva
A. E. Ageeva
V. I. Serebrovski
Publication date
28-07-2023
Publisher
Springer US
Published in
Metallurgist / Issue 3-4/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01539-8

Other articles of this Issue 3-4/2023

Metallurgist 3-4/2023 Go to the issue

Premium Partners