Skip to main content
Top

2020 | OriginalPaper | Chapter

Physicochemical Properties of Nanocellulose Extracted from Pineapple Leaf Fibres and Its Composites

Authors : Ismail Muhamad Fareez, Nazmul Haque, Der Juin Ooi, Ainil Hawa Jasni, Fauziah Abd Aziz

Published in: Pineapple Leaf Fibers

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Significant advancement on cellulose-based biomaterial research has also led to the development of nano-sized pineapple leaf cellulose fibres with wide application potentials. The present chapter presents the comprehensive review of cellulose fibre structure extracted from different pineapple varieties, covering some aspects related to the structure of this natural cellulose in terms of its morphology, chemical, physical and mechanical properties. This chapter also briefly introduces the fundamentals of nanocellulose and discussed the isolation and properties of pineapple leaf cellulose nanofibrils, nanofibrillated cellulose and cellulose nanocrystals in view to open further areas of composite study on the ideal selection of these nanomaterials for industrial use.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Madhu P, Sanjay M, Senthamaraikannan P, Pradeep S, Saravanakumar S, Yogesha B (2018) A review on synthesis and characterization of commercially available natural fibers: part-I. J Nat Fiber 1–13 Madhu P, Sanjay M, Senthamaraikannan P, Pradeep S, Saravanakumar S, Yogesha B (2018) A review on synthesis and characterization of commercially available natural fibers: part-I. J Nat Fiber 1–13
2.
go back to reference Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci
3.
go back to reference Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 54:533–549CrossRef Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 54:533–549CrossRef
4.
go back to reference Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRef Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRef
5.
go back to reference Khakalo A, Vishtal A, Retulainen E, Filpponen I, Rojas OJ (2017) Mechanically-induced dimensional extensibility of fibers towards tough fiber networks. Cellulose 24(1):191–205CrossRef Khakalo A, Vishtal A, Retulainen E, Filpponen I, Rojas OJ (2017) Mechanically-induced dimensional extensibility of fibers towards tough fiber networks. Cellulose 24(1):191–205CrossRef
6.
go back to reference Satyanarayana K, Pillai C, Sukumaran K, Pillai S, Rohatgi P, Vijayan K (1982) Structure property studies of fibres from various parts of the coconut tree. J Mater Sci 17(8):2453–2462CrossRef Satyanarayana K, Pillai C, Sukumaran K, Pillai S, Rohatgi P, Vijayan K (1982) Structure property studies of fibres from various parts of the coconut tree. J Mater Sci 17(8):2453–2462CrossRef
7.
go back to reference Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRef Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRef
8.
go back to reference Fareez IM, Ibrahim NA, Yaacob WMHW, Razali NAM, Jasni AH, Aziz FA (2018) Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25(8):4407–4421CrossRef Fareez IM, Ibrahim NA, Yaacob WMHW, Razali NAM, Jasni AH, Aziz FA (2018) Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25(8):4407–4421CrossRef
9.
go back to reference Fernández G, Pomilio AB (2003) Optimized growth conditions and determination of the catalytic type of the peptidase complex from a novel callus culture of pineapple (Ananas comosus). Mol Med Chem 1:39–49 Fernández G, Pomilio AB (2003) Optimized growth conditions and determination of the catalytic type of the peptidase complex from a novel callus culture of pineapple (Ananas comosus). Mol Med Chem 1:39–49
10.
go back to reference Chan Y, Coppens DEG, Sanewski GM (2002) Breeding and variety improvement. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple, botany, production and uses. CABI Publishing, New York, pp 33–35 Chan Y, Coppens DEG, Sanewski GM (2002) Breeding and variety improvement. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple, botany, production and uses. CABI Publishing, New York, pp 33–35
11.
go back to reference Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090CrossRef Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090CrossRef
12.
go back to reference Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef
13.
go back to reference Jose S, Salim R, Ammayappan L (2016) An overview on production, properties, and value addition of pineapple leaf fibers (PALF). J Nat Fiber 13(3):362–373CrossRef Jose S, Salim R, Ammayappan L (2016) An overview on production, properties, and value addition of pineapple leaf fibers (PALF). J Nat Fiber 13(3):362–373CrossRef
14.
go back to reference Neto ARS, Araujo MA, Barboza RM, Fonseca AS, Tonoli GH, Souza FV, Mattoso LH, Marconcini JM (2015) Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind Crop Prod 64:68–78CrossRef Neto ARS, Araujo MA, Barboza RM, Fonseca AS, Tonoli GH, Souza FV, Mattoso LH, Marconcini JM (2015) Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind Crop Prod 64:68–78CrossRef
15.
go back to reference Verma D, Gope P, Shandilya A, Gupta A, Maheshwari M (2013) Coir fibre reinforcement and application in polymer composites. A Environ Sci 4(2):263–276 Verma D, Gope P, Shandilya A, Gupta A, Maheshwari M (2013) Coir fibre reinforcement and application in polymer composites. A Environ Sci 4(2):263–276
16.
go back to reference Siregar J, Sapuan S, Rahman M, Zaman H (2008) Characterization and chemical composition of short pineapple leaf fibres (PALF). In: Proceeding of postgraduate seminar on natural fibre composites. Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor Siregar J, Sapuan S, Rahman M, Zaman H (2008) Characterization and chemical composition of short pineapple leaf fibres (PALF). In: Proceeding of postgraduate seminar on natural fibre composites. Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor
17.
go back to reference Khalil HSA, Alwani MS, Omar AKM (2007) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 1(2):220–232 Khalil HSA, Alwani MS, Omar AKM (2007) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 1(2):220–232
18.
go back to reference Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas A (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66(15):2719–2725 Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas A (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66(15):2719–2725
19.
go back to reference Wan Nadirah WO, Jawaid M, Al Masri AA, Abdul Khalil HPS, Suhaily SS, Mohamed AR (2012) Cell Wall Morphology, Chemical and Thermal Analysis of Cultivated Pineapple Leaf Fibres for Industrial Applications. J Polym Env 20 (2):404–411 Wan Nadirah WO, Jawaid M, Al Masri AA, Abdul Khalil HPS, Suhaily SS, Mohamed AR (2012) Cell Wall Morphology, Chemical and Thermal Analysis of Cultivated Pineapple Leaf Fibres for Industrial Applications. J Polym Env 20 (2):404–411
20.
go back to reference Santos RMD, Flauzino Neto WP, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crop Prod 50:707–714CrossRef Santos RMD, Flauzino Neto WP, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crop Prod 50:707–714CrossRef
21.
go back to reference Banik S, Nag D, Debnath S (2011) Utilization of pineapple leaf agro-waste for extraction of fibre and the residual biomass for vermicomposting. In: Proceeding Paper, Semantic Scholars Banik S, Nag D, Debnath S (2011) Utilization of pineapple leaf agro-waste for extraction of fibre and the residual biomass for vermicomposting. In: Proceeding Paper, Semantic Scholars
22.
go back to reference Daud Z, Mohd Hatta MZ, Mohd Kassim AS, Awang H, Mohd Aripin A (2013) Exploring of agro waste (pineapple leaf, corn stalk, and napier grass) by chemical composition and morphological study. BioResources 9(1):872–880 Daud Z, Mohd Hatta MZ, Mohd Kassim AS, Awang H, Mohd Aripin A (2013) Exploring of agro waste (pineapple leaf, corn stalk, and napier grass) by chemical composition and morphological study. BioResources 9(1):872–880
23.
go back to reference Kengkhetkit N, Amornsakchai T (2014) A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost-effectiveness. Mater Design 55:292–299 Kengkhetkit N, Amornsakchai T (2014) A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost-effectiveness. Mater Design 55:292–299
24.
go back to reference Hazarika D, Gogoi N, Jose S, Das R, Basu G (2017) Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. J Clean Prod 141:580–586 Hazarika D, Gogoi N, Jose S, Das R, Basu G (2017) Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. J Clean Prod 141:580–586
25.
go back to reference Fan LT, Gharpuray MM, Lee Y-H (1987) Nature of cellulosic material. Cellulose hydrolysis. Springer, Berlin Heidelberg, GermanyCrossRef Fan LT, Gharpuray MM, Lee Y-H (1987) Nature of cellulosic material. Cellulose hydrolysis. Springer, Berlin Heidelberg, GermanyCrossRef
26.
go back to reference Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRef Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRef
27.
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef
28.
go back to reference Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285CrossRef Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285CrossRef
29.
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
30.
go back to reference Song Y, Zhang J, Zhang X, Tan T (2015) The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose. Bioresour Technol 193:164–170CrossRef Song Y, Zhang J, Zhang X, Tan T (2015) The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose. Bioresour Technol 193:164–170CrossRef
31.
go back to reference Razali M, Amira N, Azraaie N, Abidin NAMZ, Ibrahim NA, Abdul Aziz F, Abdul Rahman S (2015) Effect of chemical treatment on crystalline cellulose: changes in crystallinity and functional groups of cellulose. Adv Mater Res 35–39 Razali M, Amira N, Azraaie N, Abidin NAMZ, Ibrahim NA, Abdul Aziz F, Abdul Rahman S (2015) Effect of chemical treatment on crystalline cellulose: changes in crystallinity and functional groups of cellulose. Adv Mater Res 35–39
32.
go back to reference Lee K-Y, Santmartí A (2018) Crystallinity and thermal stability of nanocellulose. In: Nanocellulose and sustainability. CRC Press, pp 67–86 Lee K-Y, Santmartí A (2018) Crystallinity and thermal stability of nanocellulose. In: Nanocellulose and sustainability. CRC Press, pp 67–86
33.
go back to reference Nickerson R, Habrle J (1947) Cellulose intercrystalline structure. Ind Eng Chem 39(11):1507–1512CrossRef Nickerson R, Habrle J (1947) Cellulose intercrystalline structure. Ind Eng Chem 39(11):1507–1512CrossRef
34.
go back to reference Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158CrossRef Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158CrossRef
35.
go back to reference French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20(1):583–588CrossRef French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20(1):583–588CrossRef
36.
go back to reference Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9CrossRef Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9CrossRef
37.
go back to reference Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8CrossRef Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8CrossRef
38.
go back to reference Yu H-Y, Qin Z-Y, Liu L, Yang X-G, Zhou Y, Yao J-M (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28CrossRef Yu H-Y, Qin Z-Y, Liu L, Yang X-G, Zhou Y, Yao J-M (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28CrossRef
39.
go back to reference Wei Z, Sinko R, Keten S, Luijten E (2018) Effect of surface modification on water adsorption and interfacial mechanics of cellulose nanocrystals. ACS Appl Mater Interface 10(9):8349–8358CrossRef Wei Z, Sinko R, Keten S, Luijten E (2018) Effect of surface modification on water adsorption and interfacial mechanics of cellulose nanocrystals. ACS Appl Mater Interface 10(9):8349–8358CrossRef
40.
go back to reference Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH (2017) Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Lett 9(1):70–75CrossRef Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH (2017) Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Lett 9(1):70–75CrossRef
41.
go back to reference Gauthier R, Joly C, Coupas A, Gauthier H, Escoubes M (1998) Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos 19(3):287–300CrossRef Gauthier R, Joly C, Coupas A, Gauthier H, Escoubes M (1998) Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos 19(3):287–300CrossRef
42.
go back to reference Aziz FA, Surip S, Bonnia N, Sekak K (2018) The effect of pineapple leaf fiber (PALF) incorporation into polyethylene terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conf Ser Earth Environ Sci 1:012082 Aziz FA, Surip S, Bonnia N, Sekak K (2018) The effect of pineapple leaf fiber (PALF) incorporation into polyethylene terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conf Ser Earth Environ Sci 1:012082
43.
go back to reference Vodounon NA, Kanali C, Mwero J (2018) Compressive and flexural strengths of cement stabilized earth bricks reinforced with treated and untreated pineapple leaves fibres. Open J Compos Mater 8(4):145–160CrossRef Vodounon NA, Kanali C, Mwero J (2018) Compressive and flexural strengths of cement stabilized earth bricks reinforced with treated and untreated pineapple leaves fibres. Open J Compos Mater 8(4):145–160CrossRef
44.
go back to reference Jaafar J, Siregar JP, Oumer AN, Hamdan MHM, Tezara C, Salit MS (2018a) Experimental investigation on performance of short pineapple leaf fiber reinforced tapioca biopolymer composites. BioResources 13(3):6341–6355 Jaafar J, Siregar JP, Oumer AN, Hamdan MHM, Tezara C, Salit MS (2018a) Experimental investigation on performance of short pineapple leaf fiber reinforced tapioca biopolymer composites. BioResources 13(3):6341–6355
45.
go back to reference Teles MCA, Glória GO, Altoé GR, Amoy Netto P, Margem FM, Braga FO, Monteiro SN (2015) Evaluation of the diameter influence on the tensile strength of pineapple leaf fibers (PALF) by Weibull method. Mater Res 18:185–192CrossRef Teles MCA, Glória GO, Altoé GR, Amoy Netto P, Margem FM, Braga FO, Monteiro SN (2015) Evaluation of the diameter influence on the tensile strength of pineapple leaf fibers (PALF) by Weibull method. Mater Res 18:185–192CrossRef
46.
go back to reference Wahyuningsih K, Iriani ES, Fahma F (2016) Utilization of cellulose from pineapple leaf fibers as nanofiller in polyvinyl alcohol-based film. Indones J Chem 16(2):181–189CrossRef Wahyuningsih K, Iriani ES, Fahma F (2016) Utilization of cellulose from pineapple leaf fibers as nanofiller in polyvinyl alcohol-based film. Indones J Chem 16(2):181–189CrossRef
47.
go back to reference Jaafar J, Siregar JP, Piah MBM, Cionita T, Adnan S, Rihayat T (2018b) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Env 26(11):4271–4281 Jaafar J, Siregar JP, Piah MBM, Cionita T, Adnan S, Rihayat T (2018b) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Env 26(11):4271–4281
48.
go back to reference Munajad A, Subroto C (2018) Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2):364CrossRef Munajad A, Subroto C (2018) Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2):364CrossRef
49.
go back to reference Krause C, Dreier L, Fehlmann A, Cross J (2014) The degree of polymerization of cellulosic insulation: review of measuring technologies and its significance on equipment. In: 2014 IEEE electrical insulation conference (EIC). IEEE, pp 267–271 Krause C, Dreier L, Fehlmann A, Cross J (2014) The degree of polymerization of cellulosic insulation: review of measuring technologies and its significance on equipment. In: 2014 IEEE electrical insulation conference (EIC). IEEE, pp 267–271
50.
go back to reference Santmartí A, Lee K-Y (2018) Chapter 5: crystallinity and thermal. In: Nanocellulose and sustainability: production, properties, applications, and case studies. CRC Press, Boca Raton, p 67 Santmartí A, Lee K-Y (2018) Chapter 5: crystallinity and thermal. In: Nanocellulose and sustainability: production, properties, applications, and case studies. CRC Press, Boca Raton, p 67
51.
go back to reference Santosha PCR, Gowda ASSS, Manikanth V (2018) Effect of fiber loading on thermal properties of banana and pineapple leaf fiber reinforced polyester composites. Mater Today Proc 5(2):5631–5635CrossRef Santosha PCR, Gowda ASSS, Manikanth V (2018) Effect of fiber loading on thermal properties of banana and pineapple leaf fiber reinforced polyester composites. Mater Today Proc 5(2):5631–5635CrossRef
52.
go back to reference Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interface 15(2–3):169–191CrossRef Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interface 15(2–3):169–191CrossRef
53.
go back to reference Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRef Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRef
54.
go back to reference George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485CrossRef George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485CrossRef
55.
go back to reference Chollakup R, Tantatherdtam R, Ujjin S, Sriroth K (2011) Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119(4):1952–1960CrossRef Chollakup R, Tantatherdtam R, Ujjin S, Sriroth K (2011) Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119(4):1952–1960CrossRef
56.
go back to reference Hujuri U, Chattopadhay SK, Uppaluri R, Ghoshal AK (2008) Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. J Appl Polym Sci 107(3):1507–1516CrossRef Hujuri U, Chattopadhay SK, Uppaluri R, Ghoshal AK (2008) Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. J Appl Polym Sci 107(3):1507–1516CrossRef
57.
go back to reference Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798CrossRef Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798CrossRef
58.
go back to reference George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRef George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRef
59.
go back to reference Mahardika M, Abral H, Kasim A, Arief S, Asrofi M (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2) Mahardika M, Abral H, Kasim A, Arief S, Asrofi M (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2)
60.
go back to reference Balakrishnan P, Gopi S, Geethamma VG, Kalarikkal N, Thomas S (2018) Cellulose nanofiber vs nanocrystals from pineapple leaf fiber: a comparative studies on reinforcing efficiency on starch nanocomposites. Macromol Symp 380(1) Balakrishnan P, Gopi S, Geethamma VG, Kalarikkal N, Thomas S (2018) Cellulose nanofiber vs nanocrystals from pineapple leaf fiber: a comparative studies on reinforcing efficiency on starch nanocomposites. Macromol Symp 380(1)
61.
go back to reference Shih YF, Chou MY, Lian HY, Hsu LR, Chen-Wei SM (2018) Highly transparent and impact-resistant PMMA nanocomposites reinforced by cellulose nanofibers of pineapple leaves modified by eco-friendly methods. Express Polym Lett 12(9):844–854CrossRef Shih YF, Chou MY, Lian HY, Hsu LR, Chen-Wei SM (2018) Highly transparent and impact-resistant PMMA nanocomposites reinforced by cellulose nanofibers of pineapple leaves modified by eco-friendly methods. Express Polym Lett 12(9):844–854CrossRef
62.
go back to reference Abdul Khalil HPS, Davoudpour Y, Saurabh CK, Hossain MS, Adnan AS, Dungani R, Paridah MT, Islam Sarker MZ, Fazita MRN, Syakir MI, Haafiz MKM (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836CrossRef Abdul Khalil HPS, Davoudpour Y, Saurabh CK, Hossain MS, Adnan AS, Dungani R, Paridah MT, Islam Sarker MZ, Fazita MRN, Syakir MI, Haafiz MKM (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836CrossRef
Metadata
Title
Physicochemical Properties of Nanocellulose Extracted from Pineapple Leaf Fibres and Its Composites
Authors
Ismail Muhamad Fareez
Nazmul Haque
Der Juin Ooi
Ainil Hawa Jasni
Fauziah Abd Aziz
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1416-6_9

Premium Partners