Skip to main content
Top

2024 | OriginalPaper | Chapter

Physics Informed Cellular Neural Networks for Solving Partial Differential Equations

Authors : Angela Slavova, Elena Litsyn

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Physics-Informed Neural Networks (PINNs) are a scientific machine learning technique used to solve a broad class of problems. PINNs approximate problems’ solutions by training a neural network to minimize a loss function; it includes terms reflecting the initial and boundary conditions along the space-time domain’s boundary. PINNs are deep learning networks that, given an input point in the integration domain, produce an estimated solution in that point of a differential equation after training. The basic concept behind PINN training is that it can be thought of as an unsupervised strategy that does not require labelled data, such as results from prior simulations or experiments. In this paper we generalize the idea of PINNs for solving partial differential equations by introducing physics informed cellular neural networks (PICNNs). We shall present example of the solutions of reaction-diffusion obtained by PICNNs. The advantages of the proposed new method are in the fastest algorithms and real time solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F.Chen, D. Sondak, P. Protopapas, et al. Neurodiffeq: A python package for solving differential equations with neural networks. J. Open Source Softw. 5:46, 1931, 2020. F.Chen, D. Sondak, P. Protopapas, et al. Neurodiffeq: A python package for solving differential equations with neural networks. J. Open Source Softw. 5:46, 1931, 2020.
2.
go back to reference L.O.Chua, L. Yang. Cellular Neural Network: Theory and Applications. IEEE Trans. CAS. vol. 35, p.1257, 1988. L.O.Chua, L. Yang. Cellular Neural Network: Theory and Applications. IEEE Trans. CAS. vol. 35, p.1257, 1988.
3.
go back to reference L. Lu, X. Meng, Z. Mao, et al. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 63:1, 208–228, 2021. L. Lu, X. Meng, Z. Mao, et al. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 63:1, 208–228, 2021.
4.
go back to reference S. Mishra, R. Molinaro. Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs. IMA J. Numer. Anal. ,2021. S. Mishra, R. Molinaro. Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs. IMA J. Numer. Anal. ,2021.
5.
go back to reference S.Mishra, R. Molinaro. Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA J. Numer. Anal., p drab093, 2022. S.Mishra, R. Molinaro. Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA J. Numer. Anal., p drab093, 2022.
6.
go back to reference M. Raissi, P. Perdikaris, G.E.Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707, 2019. M. Raissi, P. Perdikaris, G.E.Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707, 2019.
7.
go back to reference Y. Shin, J.Darbon, G.E.Karniadakis. On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. Commun. Comput. Phys. 28:5, 2042–2074, 2020. Y. Shin, J.Darbon, G.E.Karniadakis. On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. Commun. Comput. Phys. 28:5, 2042–2074, 2020.
8.
go back to reference A.Slavova. Cellular Neural Networks: Dynamics and Modelling, Kluwer Academic Publishers, 2003. A.Slavova. Cellular Neural Networks: Dynamics and Modelling, Kluwer Academic Publishers, 2003.
Metadata
Title
Physics Informed Cellular Neural Networks for Solving Partial Differential Equations
Authors
Angela Slavova
Elena Litsyn
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_3

Premium Partner