Skip to main content
Top
Published in:

2025 | OriginalPaper | Chapter

Physics-Informed Machine Learning Part I: Different Strategies to Incorporate Physics into Engineering Problems

Authors : Eleonora Maria Tronci, Austin R. J. Downey, Azin Mehrjoo, Puja Chowdhury, Daniel Coble

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Physics-informed machine learning (PIML) is a methodology that combines principles from physics with machine learning (ML) techniques to enhance the accuracy and interpretability of predictive models. By incorporating physical laws and constraints into the learning process, physics-informed machine learning enables more robust predictions and reduces the need for large amounts of training data. PIML has a wide range of applications in science and engineering, such as modeling physical systems, solving partial differential equations, and performing inverse analysis and optimization.
In part I of this two-part series, the authors will provide attendees with an overview of the main concepts, methods, applications, and challenges of PIML. According to the way that a first-principle model is integrated with a data-driven ML model, it is possible to classify physics-informed strategies. In this overview, seven strategies will be covered: physics-constrained ML; physics-guided ML; physics-encoded ML; data-augmentation via physics principles; transfer learning from physics-based synthetic data to experimental data; delta-learning physics correction to improve physics generalization and delta-learning unknown physics to represent unmodeled physical phenomena. The benefits of these approaches including better generalization, explainability, and efficiency of the ML models will be addressed. This work will present related challenges and limitations of each approach. Finally, the authors will discuss some open research questions and future directions for PIML. By the end of this tutorial, the participants will have a comprehensive understanding of the principles and potential of PIML, as well as the ability to critically evaluate PIML models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B.D., Todd, M.D., Mahadevan, S., Hu, C., Hu, Z.: A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies. Struct. Multidiscip. Optim. 65(12), 354 (2022)CrossRef Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B.D., Todd, M.D., Mahadevan, S., Hu, C., Hu, Z.: A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies. Struct. Multidiscip. Optim. 65(12), 354 (2022)CrossRef
2.
go back to reference Willard, J., Jia, X., Xu, S., Steinbach, M., Kumar, V.: Integrating physics-based modeling with machine learning: a survey. Preprint. arXiv:2003.04919 1(1), 1–34 (2020) Willard, J., Jia, X., Xu, S., Steinbach, M., Kumar, V.: Integrating physics-based modeling with machine learning: a survey. Preprint. arXiv:2003.04919 1(1), 1–34 (2020)
3.
go back to reference Karniadakis, G.M., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021)CrossRef Karniadakis, G.M., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021)CrossRef
4.
go back to reference Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: where we are and what’s next. J. Sci. Comput. 92(3), 88 (2022)MathSciNetCrossRef Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: where we are and what’s next. J. Sci. Comput. 92(3), 88 (2022)MathSciNetCrossRef
5.
go back to reference Faroughi, S.A., Pawar, N., Fernandes, C., Das, S., Kalantari, N.K., Mahjour, S.K.: Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing. Preprint. arXiv:2211.07377 (2022) Faroughi, S.A., Pawar, N., Fernandes, C., Das, S., Kalantari, N.K., Mahjour, S.K.: Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing. Preprint. arXiv:2211.07377 (2022)
6.
go back to reference Mumuni, A., Mumuni, F.: Data augmentation: a comprehensive survey of modern approaches. Array 16, 100258 (2022)CrossRef Mumuni, A., Mumuni, F.: Data augmentation: a comprehensive survey of modern approaches. Array 16, 100258 (2022)CrossRef
7.
go back to reference Ritto, T.G., Rochinha, F.A.: Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech. Syst. Signal Process. 155, 107614 (2021)CrossRef Ritto, T.G., Rochinha, F.A.: Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech. Syst. Signal Process. 155, 107614 (2021)CrossRef
8.
go back to reference Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRef Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRef
9.
go back to reference Pang, G., Karniadakis, G.E.: Physics-informed learning machines for partial differential equations: Gaussian processes versus neural networks. In: Kevrekidis, P., Cuevas-Maraver, J., Saxena, A. (eds.) Emerging Frontiers in Nonlinear Science. Nonlinear Systems and Complexity, vol. 32. Springer, Cham. (2020). https://doi.org/10.1007/978-3-030-44992-6_14 Pang, G., Karniadakis, G.E.: Physics-informed learning machines for partial differential equations: Gaussian processes versus neural networks. In: Kevrekidis, P., Cuevas-Maraver, J., Saxena, A. (eds.) Emerging Frontiers in Nonlinear Science. Nonlinear Systems and Complexity, vol. 32. Springer, Cham. (2020). https://​doi.​org/​10.​1007/​978-3-030-44992-6_​14
10.
go back to reference Cross, E.J., Rogers, T.J., Pitchforth, D.J., Gibson, S.J., Zhang, S., Jones, M.R.: A spectrum of physics-informed Gaussian processes for regression in engineering. Data-Centric Eng. 5, e8 (2024)CrossRef Cross, E.J., Rogers, T.J., Pitchforth, D.J., Gibson, S.J., Zhang, S., Jones, M.R.: A spectrum of physics-informed Gaussian processes for regression in engineering. Data-Centric Eng. 5, e8 (2024)CrossRef
11.
go back to reference Andersen, K., Cook, G.E., Karsai, G., Ramaswamy, K.: Artificial neural networks applied to arc welding process modeling and control. IEEE Trans. Ind. Appl. 26(5), 824–830 (1990)CrossRef Andersen, K., Cook, G.E., Karsai, G., Ramaswamy, K.: Artificial neural networks applied to arc welding process modeling and control. IEEE Trans. Ind. Appl. 26(5), 824–830 (1990)CrossRef
12.
go back to reference Wang, Z., Liu, Q., Chen, H., Chu, X.: A deformable cnn-dlstm based transfer learning method for fault diagnosis of rolling bearing under multiple working conditions. Int. J. Prod. Res. 59(16), 4811–4825 (2021)CrossRef Wang, Z., Liu, Q., Chen, H., Chu, X.: A deformable cnn-dlstm based transfer learning method for fault diagnosis of rolling bearing under multiple working conditions. Int. J. Prod. Res. 59(16), 4811–4825 (2021)CrossRef
13.
go back to reference Jiang, C., Vega, M.A., Todd, M.D., Hu, Z.: Model correction and updating of a stochastic degradation model for failure prognostics of miter gates. Reliab. Eng. Syst. Saf. 218, 108203 (2022)CrossRef Jiang, C., Vega, M.A., Todd, M.D., Hu, Z.: Model correction and updating of a stochastic degradation model for failure prognostics of miter gates. Reliab. Eng. Syst. Saf. 218, 108203 (2022)CrossRef
14.
go back to reference Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V.B., Tebbutt, W.: A differentiable programming system to bridge machine learning and scientific computing. Preprint. arXiv:1907.07587 (2019) Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V.B., Tebbutt, W.: A differentiable programming system to bridge machine learning and scientific computing. Preprint. arXiv:1907.07587 (2019)
15.
go back to reference Banerjee, C., Nguyen, K., Fookes, C., Raissi, M.: A survey on physics informed reinforcement learning: review and open problems. arXiv preprint arXiv:2309.01909 (2023) Banerjee, C., Nguyen, K., Fookes, C., Raissi, M.: A survey on physics informed reinforcement learning: review and open problems. arXiv preprint arXiv:2309.01909 (2023)
Metadata
Title
Physics-Informed Machine Learning Part I: Different Strategies to Incorporate Physics into Engineering Problems
Authors
Eleonora Maria Tronci
Austin R. J. Downey
Azin Mehrjoo
Puja Chowdhury
Daniel Coble
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_1