Skip to main content
Top

2025 | OriginalPaper | Chapter

Physics-Informed Machine Learning Part II: Applications in Structural Response Forecasting

Authors : Austin R. J. Downey, Eleonora Maria Tronci, Puja Chowdhury, Daniel Coble

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Physics-informed machine learning is a methodology that combines principles from physics with machine learning techniques to enhance the accuracy and interpretability of predictive models. By incorporating physical laws and constraints into the learning process, physics-informed machine learning enables more robust predictions and reduces the need for large amounts of training data. In part II of this two-part series, the authors present structural response forecasting using a physics-constrained methodology to solve the homogeneous second-order differential equations that constitute the equation of motion of a linear structural system. This forward problem is formulated to allow the incorporation of numerical methods into the training process while using segmented training to circumvent intrinsic stability limitations to the physics-informed machine learning problem. The ability of physics-informed machine learning to make generalizations for limited training data is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRef Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRef
2.
go back to reference Pang, Y.-H., Wang, H.-B., Zhao, J.-J., Shang, D.-Y.: Analysis and prediction of hydraulic support load based on time series data modeling. Geofluids 2020, 1–15 (2020)CrossRef Pang, Y.-H., Wang, H.-B., Zhao, J.-J., Shang, D.-Y.: Analysis and prediction of hydraulic support load based on time series data modeling. Geofluids 2020, 1–15 (2020)CrossRef
3.
go back to reference Chowdhury, P., Conrad, P., Bakos, J.D., Downey, A.: Time series forecasting for structures subjected to nonstationary inputs. In: ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, New York (2021) Chowdhury, P., Conrad, P., Bakos, J.D., Downey, A.: Time series forecasting for structures subjected to nonstationary inputs. In: ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, New York (2021)
4.
go back to reference Chen, Q., et al.: Physics Informed Learning for Dynamic Modeling of Beam Structures (2020) Chen, Q., et al.: Physics Informed Learning for Dynamic Modeling of Beam Structures (2020)
5.
go back to reference Downey, A., Micheli, L.: Open Vibrations (2021) Downey, A., Micheli, L.: Open Vibrations (2021)
Metadata
Title
Physics-Informed Machine Learning Part II: Applications in Structural Response Forecasting
Authors
Austin R. J. Downey
Eleonora Maria Tronci
Puja Chowdhury
Daniel Coble
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_8