Skip to main content
Top
Published in:

19-07-2023

Piano Players’ Intonation and Training Using Deep Learning and MobileNet Architecture

Author: Linlin Peng

Published in: Mobile Networks and Applications | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work proposes a deep learning-based note detection model to assist and evaluate students during the piano teaching and training for intonation. Traditional musical note recognition algorithms are based on either time or frequency domain analysis. These methods are inadequate for analyzing signals with time-varying frequency content as they are vulnerable to noise, have high algorithm complexity and require considerable calculation for preprocessing or feature extraction during intonation. Therefore, this paper used constant Q transform (CQT) for preprocessing and feature extraction, which performs both time and frequency domain analysis. MobileNet, which is a lightweight deep CNN model for mobile apps, is used in this paper. MobileNet’s deep separable convolution structure can satisfy the demands of both performance and inference speed required for preprocessing and feature extraction. First, spectrograms were created from the piano music signals using a constant Q transform, and potential note onset times were identified for players’ intonation. The spectrogram regions centered at these onset times were then fed into a deep separable convolutional neural network, which generated a vector of probabilities for 88 notes. Finally, this paper performed different experiments by observing the effects of varying slice lengths and data overlap settings to improve the performance of deep learning architecture. Precision, Recall and F1-score are used to assess the performance of model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Lv Z, Lloret J, Song H (2020) Internet of things and augmented reality in the age of 5G. Comput Commun 164:158–161CrossRef Lv Z, Lloret J, Song H (2020) Internet of things and augmented reality in the age of 5G. Comput Commun 164:158–161CrossRef
2.
go back to reference Li W (2022) “Analysis of piano performance characteristics by Deep Learning and Artificial Intelligence and its application in piano teaching,” Front Psychol, vol. 12, Li W (2022) “Analysis of piano performance characteristics by Deep Learning and Artificial Intelligence and its application in piano teaching,” Front Psychol, vol. 12,
5.
go back to reference Benetos E, Klapuri A, Dixon S (2012) “Score-informed transcription for automatic piano tutoring,” in European Signal Processing Conference, Bucharest, Romania, Benetos E, Klapuri A, Dixon S (2012) “Score-informed transcription for automatic piano tutoring,” in European Signal Processing Conference, Bucharest, Romania,
6.
go back to reference Qiang L, Chenxi L, Xin G (2020) Automatic fingering annotation for piano score via Judgement-HMM and Improved Viterbi. Tianjin Daxue Xuebao Ziran Kexue Yugongcheng Jishu Ban 53(8):814–824 Qiang L, Chenxi L, Xin G (2020) Automatic fingering annotation for piano score via Judgement-HMM and Improved Viterbi. Tianjin Daxue Xuebao Ziran Kexue Yugongcheng Jishu Ban 53(8):814–824
9.
14.
go back to reference Emiya V, Bertin N, David B, Badeau R (2010) “MAPS - a piano database for multipitch estimation and automatic transcription of music,” Jul. Emiya V, Bertin N, David B, Badeau R (2010) “MAPS - a piano database for multipitch estimation and automatic transcription of music,” Jul.
15.
go back to reference Costantini G, Todisco M, Saggio G (2010) “A new method for musical onset detection in polyphonic piano music,” in Proceedings of the 14th WSEAS international conference on Computers: part of the 14th WSEAS CSCC multiconference - Volume II, in ICCOMP’10. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS), Jul. pp. 545–548 Costantini G, Todisco M, Saggio G (2010) “A new method for musical onset detection in polyphonic piano music,” in Proceedings of the 14th WSEAS international conference on Computers: part of the 14th WSEAS CSCC multiconference - Volume II, in ICCOMP’10. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS), Jul. pp. 545–548
16.
go back to reference Velikic G, Titlebaum EL, Bocko MF, “Musical note segmentation employing combined time and frequency analyses,” in (2004) IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Que., Canada: IEEE, 2004, pp. iv-277-iv–280. doi: https://doi.org/10.1109/ICASSP.2004.1326817 Velikic G, Titlebaum EL, Bocko MF, “Musical note segmentation employing combined time and frequency analyses,” in (2004) IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Que., Canada: IEEE, 2004, pp. iv-277-iv–280. doi: https://​doi.​org/​10.​1109/​ICASSP.​2004.​1326817
17.
go back to reference Thornburg H, Leistikow RJ, Berger J (2007) “Melody Extraction and Musical Onset Detection via Probabilistic Models of Framewise STFT Peak Data,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1257–1272, May doi: https://doi.org/10.1109/TASL.2006.889801 Thornburg H, Leistikow RJ, Berger J (2007) “Melody Extraction and Musical Onset Detection via Probabilistic Models of Framewise STFT Peak Data,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1257–1272, May doi: https://​doi.​org/​10.​1109/​TASL.​2006.​889801
Metadata
Title
Piano Players’ Intonation and Training Using Deep Learning and MobileNet Architecture
Author
Linlin Peng
Publication date
19-07-2023
Publisher
Springer US
Published in
Mobile Networks and Applications / Issue 6/2023
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02175-x