Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Piezo-Active Composites: Classification and Effective Physical Properties

Authors : Hamideh Khanbareh, Vitaly Yu. Topolov, Christopher R. Bowen

Published in: Piezo-Particulate Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Piezo-active composites are regarded as an important group of piezoelectric materials that belong to heterogeneous dielectrics whose physical properties and related parameters depend on many factors. Among the variety of criteria for the classification of piezo-active composites, their microgeometry and connectivity play an important role. Knowledge of the connectivity pattern enables us to carry out a prediction of the effective physical properties and related parameters in terms of micromechanical methods. Piezo-active composites play a key role among modern functional materials due to the considerable electromechanical coupling, piezoelectric activity, sensitivity and anisotropy, and figures of merit. This is achieved in the presence of highly effective ferroelectric components such as poled ferroelectric ceramics and domain-engineered relaxor-ferroelectric single crystals. The properties of the composites are regarded as effective properties in accordance with features of the microstructure, domain structure, arrangement of components and connectivity. The remarkable piezoelectric properties and related parameters of the composites based on ferroelectrics stimulate the creation of novel highly effective materials and are to be taken into account for potential transducer, hydroacoustic, energy-harvesting and other applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.E. Newnham, Molecular mechanisms in smart materials. Mater. Res. Soc. Bull. 22(5), 20–34 (1997)CrossRef R.E. Newnham, Molecular mechanisms in smart materials. Mater. Res. Soc. Bull. 22(5), 20–34 (1997)CrossRef
2.
go back to reference V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009) V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009)
3.
go back to reference L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian) L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian)
4.
go back to reference R.M. Chistensen, Mechanics of Composite Materials (Wiley, New York, 1979) R.M. Chistensen, Mechanics of Composite Materials (Wiley, New York, 1979)
5.
go back to reference R.E. Newnham, Nonmechanical properties of composites, in Concise Encyclopedia of Composite Materials, ed. by A. Kelly, R.W. Cahn, M.B. Bever (Elsevier, Oxford, 1994), pp. 214–220 R.E. Newnham, Nonmechanical properties of composites, in Concise Encyclopedia of Composite Materials, ed. by A. Kelly, R.W. Cahn, M.B. Bever (Elsevier, Oxford, 1994), pp. 214–220
6.
go back to reference R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)CrossRef R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)CrossRef
7.
go back to reference V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-active composites. Orientation Effects and Anisotropy Factors (Springer, Berlin Heidelberg, 2014)CrossRef V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-active composites. Orientation Effects and Anisotropy Factors (Springer, Berlin Heidelberg, 2014)CrossRef
8.
go back to reference C.R. Bowen, V.Yu. Topolov, H.A. Kim, Modern Piezoelectric Energy-Harvesting Materials (Springer International Publishing Switzerland, 2016) C.R. Bowen, V.Yu. Topolov, H.A. Kim, Modern Piezoelectric Energy-Harvesting Materials (Springer International Publishing Switzerland, 2016)
9.
go back to reference E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)CrossRef E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)CrossRef
10.
go back to reference C.R. Bowen, V.Yu. Topolov, A.N. Isaeva, P. Bisegna, Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications. CrystEngComm 18, 5986–6001 (2016)CrossRef C.R. Bowen, V.Yu. Topolov, A.N. Isaeva, P. Bisegna, Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications. CrystEngComm 18, 5986–6001 (2016)CrossRef
11.
go back to reference M. Lines, A. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977) M. Lines, A. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)
12.
go back to reference I.S. Zheludev, Physics of Crystalline Dielectrics. V. 2: Electrical Properties (Plenum, New York, 1971) I.S. Zheludev, Physics of Crystalline Dielectrics. V. 2: Electrical Properties (Plenum, New York, 1971)
13.
go back to reference T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford New York Toronto, 1990) T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford New York Toronto, 1990)
14.
go back to reference J. Tichȳ, J. Erhart, E. Kittinger, J. Přivratská, Fundamentals of Piezoelectric Sensories. Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials (Springer, Berlin, Heidelberg, 2010) J. Tichȳ, J. Erhart, E. Kittinger, J. Přivratská, Fundamentals of Piezoelectric Sensories. Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials (Springer, Berlin, Heidelberg, 2010)
15.
go back to reference B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London New York, 1971) B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London New York, 1971)
16.
go back to reference C.H. Sherman, J.L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007)CrossRef C.H. Sherman, J.L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007)CrossRef
17.
go back to reference R. Zhang, B. Jiang, W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J. Appl. Phys. 90, 3471–3475 (2001)CrossRef R. Zhang, B. Jiang, W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J. Appl. Phys. 90, 3471–3475 (2001)CrossRef
18.
go back to reference R. Zhang, B. Jiang, W. Cao, A. Amin, Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 domain engineered single crystal. J. Mater. Sci. Lett. 21, 1877–1879 (2002)CrossRef R. Zhang, B. Jiang, W. Cao, A. Amin, Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 domain engineered single crystal. J. Mater. Sci. Lett. 21, 1877–1879 (2002)CrossRef
19.
go back to reference J.E. Smay, B. Tuttle, J. Cesarano III, Robocasting of three-dimensional piezoelectric structures, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdoğan (Springer, New York, 2008), pp. 305–318CrossRef J.E. Smay, B. Tuttle, J. Cesarano III, Robocasting of three-dimensional piezoelectric structures, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdoğan (Springer, New York, 2008), pp. 305–318CrossRef
20.
go back to reference F. Wang, C. He, Y. Tang, X. Zhao, H. Luo, Single-crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 /epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105, 273–277 (2007)CrossRef F. Wang, C. He, Y. Tang, X. Zhao, H. Luo, Single-crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO/epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105, 273–277 (2007)CrossRef
21.
go back to reference V.Yu. Topolov, S.V. Glushanin, Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J. Phys. D Appl. Phys. 35, 2008–2014 (2002)CrossRef V.Yu. Topolov, S.V. Glushanin, Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J. Phys. D Appl. Phys. 35, 2008–2014 (2002)CrossRef
22.
go back to reference F. Levassort, M. Lethiecq, D. Certon, F. Patat, A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 445–452 (1997)CrossRef F. Levassort, M. Lethiecq, D. Certon, F. Patat, A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 445–452 (1997)CrossRef
23.
go back to reference M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. (Lond.), Pt A 443, 265–287 (1993) M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. (Lond.), Pt A 443, 265–287 (1993)
24.
go back to reference J.H. Huang, S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)CrossRef J.H. Huang, S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)CrossRef
25.
go back to reference J. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. (Lond.), Pt A 241, 376–396 (1957) J. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. (Lond.), Pt A 241, 376–396 (1957)
26.
go back to reference J. Eshelby, The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. (Lond.), Pt A 252, 561–569 (1959) J. Eshelby, The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. (Lond.), Pt A 252, 561–569 (1959)
27.
go back to reference C.-W. Nan, Effective-medium theory of piezoelectric composites. J. Appl. Phys. 76, 1155–1163 (1994)CrossRef C.-W. Nan, Effective-medium theory of piezoelectric composites. J. Appl. Phys. 76, 1155–1163 (1994)CrossRef
28.
go back to reference N. Fakri, L. Azrar, L. El Bakkali, Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)CrossRef N. Fakri, L. Azrar, L. El Bakkali, Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)CrossRef
29.
go back to reference T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRef T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRef
30.
go back to reference J.H. Huang, W.-S. Kuo, Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)CrossRef J.H. Huang, W.-S. Kuo, Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)CrossRef
31.
go back to reference V.Yu. Topolov, C.R. Bowen, P. Bisegna, S.E. Filippov, The piezoelectric performance and anisotropy factors of modern three-component composites, in Nano- and Piezoelectric Technologies, Materials and Devices, ed. by I.A. Parinov (Nova Science Publishers, New York, 2013), pp. 51–78 V.Yu. Topolov, C.R. Bowen, P. Bisegna, S.E. Filippov, The piezoelectric performance and anisotropy factors of modern three-component composites, in Nano- and Piezoelectric Technologies, Materials and Devices, ed. by I.A. Parinov (Nova Science Publishers, New York, 2013), pp. 51–78
32.
go back to reference V.Yu. Topolov, P. Bisegna, C.R. Bowen, Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413, 176–191 (2011)CrossRef V.Yu. Topolov, P. Bisegna, C.R. Bowen, Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413, 176–191 (2011)CrossRef
33.
go back to reference H. Khanbareh, Expanding the functionality of piezo-particulate composites. Proefschrift ter verkrijging van der grad van doctor aan de Technische Universiteit Delft (Delft, 2016) H. Khanbareh, Expanding the functionality of piezo-particulate composites. Proefschrift ter verkrijging van der grad van doctor aan de Technische Universiteit Delft (Delft, 2016)
34.
go back to reference Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian) Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian)
35.
go back to reference K. Uchino, T. Ishii, Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400, 305–320 (2010)CrossRef K. Uchino, T. Ishii, Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400, 305–320 (2010)CrossRef
36.
go back to reference V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active Composites. Microgeometry—Sensitivity Relations. (Springer International Publishing, Cham, 2018) V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active Composites. Microgeometry—Sensitivity Relations. (Springer International Publishing, Cham, 2018)
37.
go back to reference C.R. Bowen, V.Yu. Topolov, Y. Zhang, A.A. Panich, 1–3-type composites based on ferroelectrics: electromechanical coupling, figures of merit, and piezotechnical energy-harvesting applications. Energy Technology 6, 813–828 (2018)CrossRef C.R. Bowen, V.Yu. Topolov, Y. Zhang, A.A. Panich, 1–3-type composites based on ferroelectrics: electromechanical coupling, figures of merit, and piezotechnical energy-harvesting applications. Energy Technology 6, 813–828 (2018)CrossRef
Metadata
Title
Piezo-Active Composites: Classification and Effective Physical Properties
Authors
Hamideh Khanbareh
Vitaly Yu. Topolov
Christopher R. Bowen
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19204-4_1

Premium Partners