Skip to main content
Top

2017 | OriginalPaper | Chapter

8. Piezoelectric Composites: Fabrication, Characterization, and Its Application as Sensor

Authors : Alex Otávio Sanches, José Antônio Malmonge, Walter Katsumi Sakamoto

Published in: Recent Advances in Complex Functional Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Smart materials are those that under some stimulus are able to change, significantly, one or more of its properties (e.g., mechanical, optical, or electrical) [1]. Often called “sensitive materials” because they possess susceptibility to external stimuli, smart materials show a wide area of interest opening up new possibilities in various sectors such as engineering, medicine, biology, and so on. Among smart materials, piezoelectric materials have an important role, since they can function as actuator and sensor materials, mainly in harvesting field driven by size reduction and proliferation of so-called gadgets, and other portable electronics that require less and less power, opening doors to use batteries to continually store energy from other interconverted sources like human movement [2]. Several good papers have been published in the last decade focusing the sensing and the energy harvesting characteristics of them [3–6].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Reece PL (2006) Smart materials and structures: new research, 2nd edn. Science Publishers, New York, 292 p Reece PL (2006) Smart materials and structures: new research, 2nd edn. Science Publishers, New York, 292 p
2.
go back to reference Qi Y et al (2010) Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett Washington 10(2):524–528CrossRef Qi Y et al (2010) Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett Washington 10(2):524–528CrossRef
3.
go back to reference Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers and functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001CrossRef Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers and functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001CrossRef
4.
go back to reference Park KI et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004CrossRef Park KI et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004CrossRef
5.
go back to reference Lai X, Halpert JE, Wang D (2012) Recent advances in micro/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604–5618CrossRef Lai X, Halpert JE, Wang D (2012) Recent advances in micro/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604–5618CrossRef
6.
go back to reference Hua WX, Jic Y, Lin JY, Chao N-Y (2015) Simulation experiment on acoustic emission of pipeline leakage. Int J Smart Home 9(2):243–252CrossRef Hua WX, Jic Y, Lin JY, Chao N-Y (2015) Simulation experiment on acoustic emission of pipeline leakage. Int J Smart Home 9(2):243–252CrossRef
7.
go back to reference Wada Y (1982) Electronic properties of polymers. In: Mort J, Pfister G (eds) Piezoelectricity and pyroelectricity. Wiley, New York, pp 109–159 Wada Y (1982) Electronic properties of polymers. In: Mort J, Pfister G (eds) Piezoelectricity and pyroelectricity. Wiley, New York, pp 109–159
8.
go back to reference Kawai H (1969) The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys 8:975CrossRef Kawai H (1969) The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys 8:975CrossRef
9.
10.
go back to reference Wada Y (1984) Theoretical analysis of temperature dependence of complex piezoelectric constant and pyroelectric constant of poly (vinylidene fluoride). Ferroelectrics 57:343CrossRef Wada Y (1984) Theoretical analysis of temperature dependence of complex piezoelectric constant and pyroelectric constant of poly (vinylidene fluoride). Ferroelectrics 57:343CrossRef
11.
go back to reference Dias CJ, Das-Gupta DK (1994) Piezo-and pyroelectricity in ferroelectric ceramic-polymer composites. Key Eng Mater 92-93:217CrossRef Dias CJ, Das-Gupta DK (1994) Piezo-and pyroelectricity in ferroelectric ceramic-polymer composites. Key Eng Mater 92-93:217CrossRef
12.
go back to reference Wong CK, Wong YW, Shin FG (2002) Effect of interfacial charge on polarization switching of lead zirconate titanate particles in lead zirconate titanate/polyurethane composites. J Appl Phys 92(7):3974–3978CrossRef Wong CK, Wong YW, Shin FG (2002) Effect of interfacial charge on polarization switching of lead zirconate titanate particles in lead zirconate titanate/polyurethane composites. J Appl Phys 92(7):3974–3978CrossRef
13.
go back to reference Safari A (1994) Development of piezoelectric composites for transducers. J Physique III 4:1129CrossRef Safari A (1994) Development of piezoelectric composites for transducers. J Physique III 4:1129CrossRef
14.
go back to reference Sripada S, Unsworth SJ, Krishnamurty M (1996) PZT/polymer composites for medical ultrasound. Mat Res Bul 31(6):731–739CrossRef Sripada S, Unsworth SJ, Krishnamurty M (1996) PZT/polymer composites for medical ultrasound. Mat Res Bul 31(6):731–739CrossRef
15.
go back to reference Cui C, Baughman RH, Iqbal Z, Dazmar T, Dahlstrom D (1998) Improved piezoelectric s for hydrophone applications based on calcium-modified lead titanate/poly(vinylidene fluoride) composites. Sensors Actuators A 65:76–85CrossRef Cui C, Baughman RH, Iqbal Z, Dazmar T, Dahlstrom D (1998) Improved piezoelectric s for hydrophone applications based on calcium-modified lead titanate/poly(vinylidene fluoride) composites. Sensors Actuators A 65:76–85CrossRef
16.
go back to reference Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536CrossRef Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536CrossRef
17.
go back to reference Furukawa T, Fujino K, Fukada E (1976) Electromechanical properties in the composites of epoxy resin and PZT ceramics. Jpn J Appl Phys 15(11):2119–2129CrossRef Furukawa T, Fujino K, Fukada E (1976) Electromechanical properties in the composites of epoxy resin and PZT ceramics. Jpn J Appl Phys 15(11):2119–2129CrossRef
18.
go back to reference Das-Gupta DK, Abdullah J (1988) Electroactive properties of polymer-ceramic composites. Ferroelectrics 87:213CrossRef Das-Gupta DK, Abdullah J (1988) Electroactive properties of polymer-ceramic composites. Ferroelectrics 87:213CrossRef
19.
go back to reference Takeuchi H, Jyomura S, Nakaya C (1985) New piezoelectric materials for ultrasonic transducers. Jpn J Appl Phys 24(Suppl. 2):36–40CrossRef Takeuchi H, Jyomura S, Nakaya C (1985) New piezoelectric materials for ultrasonic transducers. Jpn J Appl Phys 24(Suppl. 2):36–40CrossRef
20.
go back to reference Furukawa T (1989) Piezoelectricity and pyroelectricity in polymers. IEEE Trans Electr Insul 24:375CrossRef Furukawa T (1989) Piezoelectricity and pyroelectricity in polymers. IEEE Trans Electr Insul 24:375CrossRef
21.
go back to reference Abdullah MJ, Das-Gupta DK (1990) Electrical properties of ceramic/polymer composites. IEEE Trans Electr Insul 25(3):605–610CrossRef Abdullah MJ, Das-Gupta DK (1990) Electrical properties of ceramic/polymer composites. IEEE Trans Electr Insul 25(3):605–610CrossRef
22.
go back to reference Clegg WW, Jenkins DF, Cunningham MJ (1997) The preparation of piezoceramic–polymer thick films and their application as micromechanical actuators. Sensors Actuators A 58: 173–177CrossRef Clegg WW, Jenkins DF, Cunningham MJ (1997) The preparation of piezoceramic–polymer thick films and their application as micromechanical actuators. Sensors Actuators A 58: 173–177CrossRef
23.
go back to reference Ramazanov MA, Panakhova ZG (1997) Composite piezoelectric transducer for the registration of arterial pulse waves. Instrum Exp Tech 40(5):708–710 Ramazanov MA, Panakhova ZG (1997) Composite piezoelectric transducer for the registration of arterial pulse waves. Instrum Exp Tech 40(5):708–710
24.
go back to reference James NK et al (2014) Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites. Smart Mater Struct 23:055001–055008CrossRef James NK et al (2014) Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites. Smart Mater Struct 23:055001–055008CrossRef
25.
go back to reference Dias CJ, Das-Gupta DK (1996) Inorganic ceramic/polymer ferroelectric composite electrets. Ferroelectrics 3(5):706–734 Dias CJ, Das-Gupta DK (1996) Inorganic ceramic/polymer ferroelectric composite electrets. Ferroelectrics 3(5):706–734
26.
go back to reference James NK et al (2013) Piezoelectric and mechanical properties of structured PZT-epoxy composites. J Mater Res 28:635–641 James NK et al (2013) Piezoelectric and mechanical properties of structured PZT-epoxy composites. J Mater Res 28:635–641
27.
go back to reference Chen Y, Chan HLW, Choy CL (1998) Pyroelectric properties of PbTiO3/P(VDF–TrFE) 0–3 nanocomposite films. Thin Solid Films 323(1–2):270–274CrossRef Chen Y, Chan HLW, Choy CL (1998) Pyroelectric properties of PbTiO3/P(VDF–TrFE) 0–3 nanocomposite films. Thin Solid Films 323(1–2):270–274CrossRef
28.
go back to reference Sa-Gong G, Safari A, Jang SJ, Newnham RE (1986) Poling flexible piezoelectric composites. Ferroelectr Lett 5:131CrossRef Sa-Gong G, Safari A, Jang SJ, Newnham RE (1986) Poling flexible piezoelectric composites. Ferroelectr Lett 5:131CrossRef
29.
go back to reference Macdonald GA (1990) A review of low cost accelerometers for vehicle dynamics. Sensors Actuators A A21-A23:303–307CrossRef Macdonald GA (1990) A review of low cost accelerometers for vehicle dynamics. Sensors Actuators A A21-A23:303–307CrossRef
30.
go back to reference Shiozaki M, Kamiya S, Kuroyanagi M, Matsui K, Kizu R (1991) High speed control of damping force using piezoelectric elements. SAE Trans 100:884 Shiozaki M, Kamiya S, Kuroyanagi M, Matsui K, Kizu R (1991) High speed control of damping force using piezoelectric elements. SAE Trans 100:884
31.
go back to reference Bhalla S, Suresh R (2013) Condition monitoring of bones using piezo-transducers. Meccanica 48:2233–2244CrossRef Bhalla S, Suresh R (2013) Condition monitoring of bones using piezo-transducers. Meccanica 48:2233–2244CrossRef
32.
go back to reference Gururaja TR, Schulze WA, Cross LE, Newnham RE (1985) Piezoelectric composite materials for ultrasonic transducer applications. I. Resonant modes of PZT rods-polymer composites. IEEE Trans Sonics Ultrasonics SU-32:499CrossRef Gururaja TR, Schulze WA, Cross LE, Newnham RE (1985) Piezoelectric composite materials for ultrasonic transducer applications. I. Resonant modes of PZT rods-polymer composites. IEEE Trans Sonics Ultrasonics SU-32:499CrossRef
33.
go back to reference Mort J, Pfister G (1982) Electronic properties of polymers. Wiley, New York Mort J, Pfister G (1982) Electronic properties of polymers. Wiley, New York
34.
go back to reference Richerson DW (1982) Modern ceramic engineering properties, processing and use in design. Marcel Dekker Inc, New York Richerson DW (1982) Modern ceramic engineering properties, processing and use in design. Marcel Dekker Inc, New York
35.
go back to reference Callen HB (1985) Thermodynamics and an introduction to thermostatistics, 2nd edn. Wiley, Canadá Callen HB (1985) Thermodynamics and an introduction to thermostatistics, 2nd edn. Wiley, Canadá
36.
37.
go back to reference Yang X, You X (2013) Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Appl Math Inf Sci 7(5):1977–1983CrossRef Yang X, You X (2013) Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Appl Math Inf Sci 7(5):1977–1983CrossRef
38.
go back to reference Van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRef Van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRef
39.
go back to reference Sakamoto WK, Malmonge JA, Fernandes SH (2004) Ferroelectric ceramic/polymer composite for soil-humidity detection. Sens Transducers Mag 39(1):112–120 Sakamoto WK, Malmonge JA, Fernandes SH (2004) Ferroelectric ceramic/polymer composite for soil-humidity detection. Sens Transducers Mag 39(1):112–120
40.
go back to reference Grosse CU, Ohtsu M (eds) (2008) Acoustic emission testing. Springer, Leipzig/Berlin Heidelberg Grosse CU, Ohtsu M (eds) (2008) Acoustic emission testing. Springer, Leipzig/Berlin Heidelberg
41.
go back to reference The Japanese Society for Non-Destructive Inspection (2006) Practical acoustic emission testing. Springer, Tokio The Japanese Society for Non-Destructive Inspection (2006) Practical acoustic emission testing. Springer, Tokio
42.
go back to reference Kaphle M, Tan A, Andy C, Thambiratnam D (2009) Structural health monitoring of bridges using acoustic emission technology and signal processing techniques. 13th Asia Pacific Vibration Conference. University of. Canterbury, Christchurch, pp 1–11 Kaphle M, Tan A, Andy C, Thambiratnam D (2009) Structural health monitoring of bridges using acoustic emission technology and signal processing techniques. 13th Asia Pacific Vibration Conference. University of. Canterbury, Christchurch, pp 1–11
43.
go back to reference Zhao P, Kim S, Hinderliter B (2015) Investigation of cement–sand-based piezoelectric composites. J Intell Mater Syst Struct 27:1–7 Zhao P, Kim S, Hinderliter B (2015) Investigation of cement–sand-based piezoelectric composites. J Intell Mater Syst Struct 27:1–7
44.
go back to reference Qin L et al (2009) The application of 1–3 cement-based piezoelectric transducers in active and passive health monitoring for concrete structures. Smart Mater Struct 18:1–8CrossRef Qin L et al (2009) The application of 1–3 cement-based piezoelectric transducers in active and passive health monitoring for concrete structures. Smart Mater Struct 18:1–8CrossRef
45.
go back to reference Li Z et al (2007) An investigation on 1–3 cement based piezoelectric composites. Smart Mater Struct 16:1–8CrossRef Li Z et al (2007) An investigation on 1–3 cement based piezoelectric composites. Smart Mater Struct 16:1–8CrossRef
46.
go back to reference Qin L, Ren H-W, Dong B-Q, Xing F (2014) Acoustic emission behavior of early age concrete monitored by embedded sensors. Materials 7:6908–6918CrossRef Qin L, Ren H-W, Dong B-Q, Xing F (2014) Acoustic emission behavior of early age concrete monitored by embedded sensors. Materials 7:6908–6918CrossRef
47.
go back to reference Or SW, Chan HLW, Choy CL (2000) P(VDF-TrFE) copolymer acoustic emission sensors. Sensors Actuators 80:237–241CrossRef Or SW, Chan HLW, Choy CL (2000) P(VDF-TrFE) copolymer acoustic emission sensors. Sensors Actuators 80:237–241CrossRef
48.
go back to reference Iliopoulos SN, El Khattabi Y, Aggelis DG (2016) Towards the establishment of a continuous nondestructive monitoring technique for fresh concrete. J Nondestruct Eval 35:35–37CrossRef Iliopoulos SN, El Khattabi Y, Aggelis DG (2016) Towards the establishment of a continuous nondestructive monitoring technique for fresh concrete. J Nondestruct Eval 35:35–37CrossRef
49.
go back to reference Sakamoto WK et al (2006) PTCa/PEEK composite acoustic emission sensors. IEEE Trans Dielectr Electr Insul 13:1177–1182 Sakamoto WK et al (2006) PTCa/PEEK composite acoustic emission sensors. IEEE Trans Dielectr Electr Insul 13:1177–1182
50.
go back to reference Yang Y, Hu Y, Lu Y (2008) Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors 8:327–346CrossRef Yang Y, Hu Y, Lu Y (2008) Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors 8:327–346CrossRef
51.
go back to reference Dong B, Xing F, Li Z (2011) Cement-based piezoelectric ceramic composite and its sensor applications in civil engineering. ACI Mater J 108(5):543–549 Dong B, Xing F, Li Z (2011) Cement-based piezoelectric ceramic composite and its sensor applications in civil engineering. ACI Mater J 108(5):543–549
52.
go back to reference Grosse CU, Kruger M, Glaser SD (2006) Wireless acoustic emission sensor networks for structural health monitoring in civil engineering. 9th European Conference on Non-destructive Testing. Berlin. ECNDT, Tu1.7.3:1–8 Grosse CU, Kruger M, Glaser SD (2006) Wireless acoustic emission sensor networks for structural health monitoring in civil engineering. 9th European Conference on Non-destructive Testing. Berlin. ECNDT, Tu1.7.3:1–8
53.
go back to reference Nair A, Cai CS (2010) Acoustic emission monitoring of bridges: review and case studies. Eng Struct 32:1704–1714CrossRef Nair A, Cai CS (2010) Acoustic emission monitoring of bridges: review and case studies. Eng Struct 32:1704–1714CrossRef
54.
go back to reference Giurgiutiu V, Zagrai A, Bao JJ (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monit 1:41–61CrossRef Giurgiutiu V, Zagrai A, Bao JJ (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monit 1:41–61CrossRef
55.
go back to reference Sakamoto WK, Shibatta-Kagesawa S, Kanda DHF, Fernandes SH, Longo E, Chierice GO (1999) Piezoelectric effect in composite polyurethane-ferroelectric ceramics. Phys Stat Sol A 172:265–271CrossRef Sakamoto WK, Shibatta-Kagesawa S, Kanda DHF, Fernandes SH, Longo E, Chierice GO (1999) Piezoelectric effect in composite polyurethane-ferroelectric ceramics. Phys Stat Sol A 172:265–271CrossRef
56.
go back to reference Jinrui H et al (2015) A new smart traffic monitoring method using embedded cement-based piezoelectric sensors. Smart Mater Struct 24:1–8 Jinrui H et al (2015) A new smart traffic monitoring method using embedded cement-based piezoelectric sensors. Smart Mater Struct 24:1–8
57.
go back to reference Youyuan L, Zongjin L (2008) Cement-based piezoelectric sensor for acoustic emission detection in concrete structures. Earth Space Int Conf Eng Sci Constr Oper Challenging Environ ASCE Am Soc Civil Eng 1–12. doi:http://dx.doi.org/10.1061/40988(323)155 Youyuan L, Zongjin L (2008) Cement-based piezoelectric sensor for acoustic emission detection in concrete structures. Earth Space Int Conf Eng Sci Constr Oper Challenging Environ ASCE Am Soc Civil Eng 1–12. doi:http://​dx.​doi.​org/​10.​1061/​40988(323)155
58.
go back to reference Gorman MR (1991) Plate wave acoustic emission. J Acoust Soc Am 90:358–364CrossRef Gorman MR (1991) Plate wave acoustic emission. J Acoust Soc Am 90:358–364CrossRef
59.
go back to reference Chan HLW, Or SW, Choy CLP (2000) P(VDF – TrFE), copolymer emission sensors. Sensors Actuators A 80:237–241CrossRef Chan HLW, Or SW, Choy CLP (2000) P(VDF – TrFE), copolymer emission sensors. Sensors Actuators A 80:237–241CrossRef
60.
go back to reference Wenger MP, Blanas P, Shuford RJ, Das-Gupta DK (1999) Characterization and evaluation of piezoelectric composite bimorph for in situ acoustic emission sensors. Polym Eng Sci 39(3):508–518CrossRef Wenger MP, Blanas P, Shuford RJ, Das-Gupta DK (1999) Characterization and evaluation of piezoelectric composite bimorph for in situ acoustic emission sensors. Polym Eng Sci 39(3):508–518CrossRef
61.
go back to reference Sause MGR (2011) Investigation of pencil-lead breaks as acoustic emission sources. J Acoustic Emission 29:184–196 Sause MGR (2011) Investigation of pencil-lead breaks as acoustic emission sources. J Acoustic Emission 29:184–196
Metadata
Title
Piezoelectric Composites: Fabrication, Characterization, and Its Application as Sensor
Authors
Alex Otávio Sanches
José Antônio Malmonge
Walter Katsumi Sakamoto
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53898-3_8

Premium Partners