Skip to main content
Top

2017 | OriginalPaper | Chapter

16. Pigments and Colorants from Filamentous Fungi

Authors : Yanis Caro, Mekala Venkatachalam, Juliana Lebeau, Mireille Fouillaud, Laurent Dufossé

Published in: Fungal Metabolites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the impact of globalization on research trends; the search for healthier lifestyles; the increasing public demand for natural, organic, and “clean labelled” products; as well as the growing global market for natural colorants in economically fast-growing countries all over the world, filamentous fungi started to be investigated as readily available sources of chemically diverse pigments and colorants. The formulation of recipes containing fungal pigmented secondary metabolites has steadily increased over recent years. For all of these reasons, this chapter highlights exciting findings, which may pave the way for alternative and/or additional biotechnological processes for industrial applications of fungal pigments and colorants. The fungal biodiversity from terrestrial and marine origins is first discussed as potential sources of well-known carotenoid pigments (e.g., β-carotene, lycopene) and other specific pigmented polyketide molecules, such as Monascus and Monascus-like azaphilones, which are yet not known to be biosynthesized by any other organisms like higher plants. These polyketide pigments also represent promising and yet unexplored hydroxy-anthraquinoid colorants from Ascomycetous species. The putative biosynthetic pathways of the carotenoids and polyketide-derivative colored molecules (i.e., azaphilones, hydroxyanthraquinones, and naphthoquinones) in pigment-producing fungal species are investigated herein. As an additional aspect, this chapter describes biotechnological approaches for improving fungal pigment production and identifying new clean opportunities for the future. Alternative greener extraction processes of the fungal colored compounds are also further explored. The current industrial applications along with their limits and further opportunities for the use of fungal pigments in beverage, food, pharmaceutical, cosmetic, textile, and painting areas are, then, presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dufossé L, Galaup P, Yaron A, Arad SH, Blanc P, Chidambara Murthy KN, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406CrossRef Dufossé L, Galaup P, Yaron A, Arad SH, Blanc P, Chidambara Murthy KN, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406CrossRef
2.
go back to reference Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321 Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321
3.
go back to reference Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61CrossRef Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61CrossRef
4.
go back to reference Sutthiwong N, Caro Y, Laurent P, Fouillaud M, Valla A, Dufossé L (2013) Production of biocolours (Chapter 12). In: Panesar PS, Marwaha SS (eds) Biotechnology in agriculture and food processing: opportunities and challenges, 1st edn. Francis & Taylor, CRC Press, Boca Raton Sutthiwong N, Caro Y, Laurent P, Fouillaud M, Valla A, Dufossé L (2013) Production of biocolours (Chapter 12). In: Panesar PS, Marwaha SS (eds) Biotechnology in agriculture and food processing: opportunities and challenges, 1st edn. Francis & Taylor, CRC Press, Boca Raton
5.
go back to reference Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in fungal taxonomy. Mycol Res 112:231–240CrossRef Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in fungal taxonomy. Mycol Res 112:231–240CrossRef
6.
go back to reference Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100:15670–15675. doi:10.1073/pnas.2532165100CrossRef Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100:15670–15675. doi:10.1073/pnas.2532165100CrossRef
7.
go back to reference Brown DW, Butchko RA, Baker SE, Proctor RH (2012) Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fungal Biol 116:318–331CrossRef Brown DW, Butchko RA, Baker SE, Proctor RH (2012) Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fungal Biol 116:318–331CrossRef
8.
go back to reference Gao J-M, Yang S-X, Qin J-C (2013) Azaphilones: chemistry and biology. Chem Rev 113:4755–4811CrossRef Gao J-M, Yang S-X, Qin J-C (2013) Azaphilones: chemistry and biology. Chem Rev 113:4755–4811CrossRef
9.
go back to reference Yang Y, Liu B, Du X, Li P, Liang B, Cheng X, Du L, Huang D, Wang L, Wang S (2015) Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep 5:8331. doi:10.1038/srep08331CrossRef Yang Y, Liu B, Du X, Li P, Liang B, Cheng X, Du L, Huang D, Wang L, Wang S (2015) Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep 5:8331. doi:10.1038/srep08331CrossRef
10.
go back to reference Fu G, Xu Y, Li Y, Tan W (2007) Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16(Suppl 1):137–142 Fu G, Xu Y, Li Y, Tan W (2007) Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16(Suppl 1):137–142
11.
go back to reference Woo PC, Lam CW, Tam EW, Lee KC, Yung KK, Leung CK, Sze KH, Lau SK, Yuen KY (2014) The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei. Sci Rep 4:6728. doi:10.1038/srep06728CrossRef Woo PC, Lam CW, Tam EW, Lee KC, Yung KK, Leung CK, Sze KH, Lau SK, Yuen KY (2014) The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei. Sci Rep 4:6728. doi:10.1038/srep06728CrossRef
12.
go back to reference Kumar M, Dwivedi P, Sharma AK, Sankar M, Patil RD, Singh ND (2014) Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicol Ind Health 30:90–98CrossRef Kumar M, Dwivedi P, Sharma AK, Sankar M, Patil RD, Singh ND (2014) Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicol Ind Health 30:90–98CrossRef
13.
go back to reference Leite DP Jr, Yamamoto AC, Amadio JV, Martins ER, do Santos FA, Simões Sde A, Hahn RC (2012) Trichocomaceae: biodiversity of Aspergillus spp and Penicillium spp residing in libraries. J Infect Dev Ctries 6:734–742 Leite DP Jr, Yamamoto AC, Amadio JV, Martins ER, do Santos FA, Simões Sde A, Hahn RC (2012) Trichocomaceae: biodiversity of Aspergillus spp and Penicillium spp residing in libraries. J Infect Dev Ctries 6:734–742
14.
go back to reference Frisvad JC (2015) Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 5:773. doi:10.3389/fmicb.2014.00773CrossRef Frisvad JC (2015) Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 5:773. doi:10.3389/fmicb.2014.00773CrossRef
15.
go back to reference Teixeira MFS, Martins MS, Da Silva JC, Kirsch LS, Fernandes OCC, Carneiro ALB, De Conti R, Durán N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium-characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharmacol 6:300–311 Teixeira MFS, Martins MS, Da Silva JC, Kirsch LS, Fernandes OCC, Carneiro ALB, De Conti R, Durán N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium-characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharmacol 6:300–311
16.
go back to reference Sardaryan E (2002) Strain of the microorganism Penicillium oxalicum var. armeniaca and its application. Patent US 6340586 B1: 4 Sardaryan E (2002) Strain of the microorganism Penicillium oxalicum var. armeniaca and its application. Patent US 6340586 B1: 4
17.
go back to reference Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufossé L (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193CrossRef Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufossé L (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193CrossRef
18.
go back to reference Ogihara J, Kato J, Oishi K, Fujimoto Y (2001) PP-R, 7-(2-Hydroxyethyl)-Monascorubramine, a red pigment produced in the mycelia of Penicillium sp. AZ. J Biosci Bioeng 91:44–47CrossRef Ogihara J, Kato J, Oishi K, Fujimoto Y (2001) PP-R, 7-(2-Hydroxyethyl)-Monascorubramine, a red pigment produced in the mycelia of Penicillium sp. AZ. J Biosci Bioeng 91:44–47CrossRef
19.
go back to reference Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus like food pigments in Penicillium species. J Agric Food Chem 56:9981–9989. doi:10.1021/jf801817qCrossRef Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus like food pigments in Penicillium species. J Agric Food Chem 56:9981–9989. doi:10.1021/jf801817qCrossRef
20.
go back to reference Mendez A, Perez C, Montanez JC, Martinez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ-Sci B (Biomed Biotechnol) 12:961–968CrossRef Mendez A, Perez C, Montanez JC, Martinez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ-Sci B (Biomed Biotechnol) 12:961–968CrossRef
21.
go back to reference Hailei W, Zhifang R, Ping L, Yanchang G, Guosheng L, Jianming Y (2011) Improvement of the production of a red pigment in Penicillium sp HSD07B synthesized during co-culture with Candida tropicalis. Bioresour Technol 102:6082–6087CrossRef Hailei W, Zhifang R, Ping L, Yanchang G, Guosheng L, Jianming Y (2011) Improvement of the production of a red pigment in Penicillium sp HSD07B synthesized during co-culture with Candida tropicalis. Bioresour Technol 102:6082–6087CrossRef
22.
go back to reference Santos-Ebinuma VC, Teixeira MFS, Pessoa A Jr (2013) Submerged culture conditions for the production of alternative natural colorants by a new isolated Penicillium purpurogenum DPUA 1275. J Microbiol Biotechnol 23:802–810CrossRef Santos-Ebinuma VC, Teixeira MFS, Pessoa A Jr (2013) Submerged culture conditions for the production of alternative natural colorants by a new isolated Penicillium purpurogenum DPUA 1275. J Microbiol Biotechnol 23:802–810CrossRef
23.
go back to reference Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM, Samson RA (2012) Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia 29:39–54. doi:10.3767/003158512X659500CrossRef Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM, Samson RA (2012) Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia 29:39–54. doi:10.3767/003158512X659500CrossRef
24.
go back to reference Espinoza-Hernández TC, Rodríguez-Herrera R, Aguilar-González CN, Lara-Victoriano F, Reyes-Valdés MH, Castillo-Reyes F (2013) Characterization of three novel pigment-producing Penicillium strains isolated from the Mexican semidesert. Afr J Biotechnol 12:3405–3413 Espinoza-Hernández TC, Rodríguez-Herrera R, Aguilar-González CN, Lara-Victoriano F, Reyes-Valdés MH, Castillo-Reyes F (2013) Characterization of three novel pigment-producing Penicillium strains isolated from the Mexican semidesert. Afr J Biotechnol 12:3405–3413
25.
go back to reference Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24–28CrossRef Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24–28CrossRef
26.
go back to reference Jeya M, Joo AR, Lee KM, Tiwari MK, Lee KM, Kim SH, Lee JK (2010) Characterization of b-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl Microbiol Biotechnol 86:1473–1484CrossRef Jeya M, Joo AR, Lee KM, Tiwari MK, Lee KM, Kim SH, Lee JK (2010) Characterization of b-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl Microbiol Biotechnol 86:1473–1484CrossRef
27.
go back to reference Zou S, Xie L, Liu Y, Kaleem I, Zhang G, Li C (2012) N-linked glycosylation influences on the catalytic and biochemical properties of Penicillium purpurogenum b-d-glucuronidase. J Biotechnol 157:399–404CrossRef Zou S, Xie L, Liu Y, Kaleem I, Zhang G, Li C (2012) N-linked glycosylation influences on the catalytic and biochemical properties of Penicillium purpurogenum b-d-glucuronidase. J Biotechnol 157:399–404CrossRef
28.
go back to reference Houbraken J, de Vries RP, Samson RA (2014) Chapter four – modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249CrossRef Houbraken J, de Vries RP, Samson RA (2014) Chapter four – modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249CrossRef
30.
go back to reference Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2012) Production of Monascus-like pigments. European patent EP 2010/2262862 A2; 2012 Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2012) Production of Monascus-like pigments. European patent EP 2010/2262862 A2; 2012
31.
go back to reference Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J, Samson RA (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One 8:e84102. doi: 10.1371/journal.pone.0084102 Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J, Samson RA (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One 8:e84102. doi: 10.1371/journal.pone.0084102
32.
go back to reference Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Micro + 49:85–99 Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Micro + 49:85–99
33.
go back to reference Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR (2012) Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol 28:1467–1474CrossRef Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR (2012) Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol 28:1467–1474CrossRef
34.
go back to reference Brakhage AA, Liebmann B (2005) Aspergillus fumigatus conidial pigment and cAMP signal transduction: significance for virulence. Med Mycol 43:S75–S82CrossRef Brakhage AA, Liebmann B (2005) Aspergillus fumigatus conidial pigment and cAMP signal transduction: significance for virulence. Med Mycol 43:S75–S82CrossRef
35.
go back to reference Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet Biol 48:430–437CrossRef Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet Biol 48:430–437CrossRef
36.
go back to reference Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CA, Nielsen KF, Frisvad JC, Ram AF (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553CrossRef Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CA, Nielsen KF, Frisvad JC, Ram AF (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553CrossRef
37.
go back to reference Zabala AO, Xu W, Chooi YH, Tang Y (2012) Discovery and characterization of a silent gene cluster that produces azaphilones from Aspergillus niger ATCC 1015 reveal a Hydroxylation-Mediated Pyran-Ring Formation. Chem Biol 19:1049–1059CrossRef Zabala AO, Xu W, Chooi YH, Tang Y (2012) Discovery and characterization of a silent gene cluster that produces azaphilones from Aspergillus niger ATCC 1015 reveal a Hydroxylation-Mediated Pyran-Ring Formation. Chem Biol 19:1049–1059CrossRef
38.
go back to reference Ogasawara N, Mizuno R, Kawai KI (1997) Structures of a new type of yellow pigments, falconensones A and B, from Emericella falconensis. J Chem Soc Perkin Trans 1:2527–2530CrossRef Ogasawara N, Mizuno R, Kawai KI (1997) Structures of a new type of yellow pigments, falconensones A and B, from Emericella falconensis. J Chem Soc Perkin Trans 1:2527–2530CrossRef
39.
go back to reference Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238CrossRef Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238CrossRef
40.
go back to reference Hideyuki T, Koohei N, Ken-ichi K (1996) Isolation and structures of dicyanide derivatives, epurpurins A to C, from Emericella purpurea. Chem Pharm Bull (Tokyo) 44:2227–2230CrossRef Hideyuki T, Koohei N, Ken-ichi K (1996) Isolation and structures of dicyanide derivatives, epurpurins A to C, from Emericella purpurea. Chem Pharm Bull (Tokyo) 44:2227–2230CrossRef
41.
go back to reference Rank C, Nielsen KF, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of sterigmatocystin in filamentous fungi. Fungal Biol-UK 115:406–420CrossRef Rank C, Nielsen KF, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of sterigmatocystin in filamentous fungi. Fungal Biol-UK 115:406–420CrossRef
42.
go back to reference Velmurugan P, Kamala-Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr Polym 79:262–268CrossRef Velmurugan P, Kamala-Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr Polym 79:262–268CrossRef
43.
go back to reference Frisvad JC, Thrane U (2004) Mycotoxin production by common filamentous fungi. In: Samson RA, Hoekstra ES, Frisvad JC (eds) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures (CBS), Utrecht Frisvad JC, Thrane U (2004) Mycotoxin production by common filamentous fungi. In: Samson RA, Hoekstra ES, Frisvad JC (eds) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures (CBS), Utrecht
44.
go back to reference Anke H, Kolthoum I, Zähner H, Laatsch H (1980) Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Arch Microbiol 126:223–230CrossRef Anke H, Kolthoum I, Zähner H, Laatsch H (1980) Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Arch Microbiol 126:223–230CrossRef
45.
go back to reference Li DL, Li XM, Wang BG (2009) Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol 19:675–680 Li DL, Li XM, Wang BG (2009) Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol 19:675–680
46.
go back to reference Cho YJ, Hwang HJ, Kim SW, Song CH, Yun JW (2002) Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J Biotechnol 95:13–23CrossRef Cho YJ, Hwang HJ, Kim SW, Song CH, Yun JW (2002) Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J Biotechnol 95:13–23CrossRef
47.
go back to reference Díaz-Sánchez V, Avalos J, Limón MC (2012) Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol 78:7258–7266CrossRef Díaz-Sánchez V, Avalos J, Limón MC (2012) Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol 78:7258–7266CrossRef
48.
go back to reference Niehaus EM, Janevska S, von Bargen KW, Sieber CMK, Harrer H, Humpf H-U, Tudzynski B (2014) Apicidin F: characterization and genetic manipulation of nesecondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS One 9:e103336. doi:10.1371/journal.pone.0103336CrossRef Niehaus EM, Janevska S, von Bargen KW, Sieber CMK, Harrer H, Humpf H-U, Tudzynski B (2014) Apicidin F: characterization and genetic manipulation of nesecondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS One 9:e103336. doi:10.1371/journal.pone.0103336CrossRef
49.
go back to reference Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611CrossRef Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611CrossRef
50.
go back to reference Avalos J, Prado-Cabrero A, Estrada AF (2012) Neurosporaxanthin production by Neurospora and Fusarium (Chapter 18). In: Barredo JL (ed) Microbial carotenoids from fungi: methods in molecular biology, vol 898. Springer, New YorkCrossRef Avalos J, Prado-Cabrero A, Estrada AF (2012) Neurosporaxanthin production by Neurospora and Fusarium (Chapter 18). In: Barredo JL (ed) Microbial carotenoids from fungi: methods in molecular biology, vol 898. Springer, New YorkCrossRef
51.
go back to reference Tatum JH, Baker RA, Berry RE (1985) Naphthoquinones produced by Fusarium oxysporum isolated from citrus. Phytochemistry 24:457–459CrossRef Tatum JH, Baker RA, Berry RE (1985) Naphthoquinones produced by Fusarium oxysporum isolated from citrus. Phytochemistry 24:457–459CrossRef
52.
go back to reference Norred WP, Plattner RD, Vesonder RF, Bacon CW, Voss KA (1992) Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food Chem Toxicol 30:233–237CrossRef Norred WP, Plattner RD, Vesonder RF, Bacon CW, Voss KA (1992) Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food Chem Toxicol 30:233–237CrossRef
53.
go back to reference Kitagawa A, Sugihara Y, Okumura M, Kawai K, Hamasaki T (1997) Reexamination of respiration-impairing effect of bikaverin on isolated mitochondria. Cereal Res Commun 25:451–452 Kitagawa A, Sugihara Y, Okumura M, Kawai K, Hamasaki T (1997) Reexamination of respiration-impairing effect of bikaverin on isolated mitochondria. Cereal Res Commun 25:451–452
54.
go back to reference Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf H-U, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946CrossRef Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf H-U, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946CrossRef
55.
go back to reference Limón MC, Rodríguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29CrossRef Limón MC, Rodríguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29CrossRef
56.
go back to reference Rodríguez-Ortiz R, Mehta B, Avalos J, Limón M (2010) Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol 85:1991–2000CrossRef Rodríguez-Ortiz R, Mehta B, Avalos J, Limón M (2010) Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol 85:1991–2000CrossRef
57.
go back to reference Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080CrossRef Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080CrossRef
58.
go back to reference Frandsen RJN, Schutt C, Lund BW, Staerk D, Nielsen J, Olsson S, Giese H (2011) Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem 286:10419–10428CrossRef Frandsen RJN, Schutt C, Lund BW, Staerk D, Nielsen J, Olsson S, Giese H (2011) Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem 286:10419–10428CrossRef
59.
go back to reference Graziani S, Vasnier C, Daboussi MJ (2004) Novel polyketide synthase from Nectria haematococca. Appl Environ Microbiol 70:2984–2988CrossRef Graziani S, Vasnier C, Daboussi MJ (2004) Novel polyketide synthase from Nectria haematococca. Appl Environ Microbiol 70:2984–2988CrossRef
60.
go back to reference Proctor RH, Butchko RAE, Brown DW, Moretti A (2007) Functional characterization, sequence comparisons and distribution of a polyketide synthase gene required for perithecial pigmentation in some Fusarium species. Food Addit Contam 24:1076–1087CrossRef Proctor RH, Butchko RAE, Brown DW, Moretti A (2007) Functional characterization, sequence comparisons and distribution of a polyketide synthase gene required for perithecial pigmentation in some Fusarium species. Food Addit Contam 24:1076–1087CrossRef
61.
go back to reference Boonyapranai K, Tungpradit R, Lhieochaiphant S, Phutrakul S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466 Boonyapranai K, Tungpradit R, Lhieochaiphant S, Phutrakul S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466
62.
go back to reference Studt L, Wiemann P, Kleigrewe K, Humpf H-U, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4680CrossRef Studt L, Wiemann P, Kleigrewe K, Humpf H-U, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4680CrossRef
63.
go back to reference Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85:359–361CrossRef Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85:359–361CrossRef
64.
go back to reference Cajori FA, Otani TT, Hamilton MA (1954) The isolation and some properties of an antibiotic from Fusarium bostrycoides. J Biol Chem 208:107–114 Cajori FA, Otani TT, Hamilton MA (1954) The isolation and some properties of an antibiotic from Fusarium bostrycoides. J Biol Chem 208:107–114
65.
go back to reference Ashley JN, Hobbs BC, Raistrick H (1937) Studies in the biochemistry of microorganisms LIII. The crystallinecolouring matters of Fusarium culmorum (W.G. Smith) Sacc. and related forms. Biochem J 31:385–397CrossRef Ashley JN, Hobbs BC, Raistrick H (1937) Studies in the biochemistry of microorganisms LIII. The crystallinecolouring matters of Fusarium culmorum (W.G. Smith) Sacc. and related forms. Biochem J 31:385–397CrossRef
66.
go back to reference Samson RA, Hoekstra ES, Frisvad JC (2000) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures (CBS), Utrecht Samson RA, Hoekstra ES, Frisvad JC (2000) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures (CBS), Utrecht
67.
go back to reference Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959CrossRef Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959CrossRef
68.
go back to reference Kreitman G, Nord FF (1949) Lycopersin, pigment of Fusarium lycopersici. Arch Biochem 21:457–458 Kreitman G, Nord FF (1949) Lycopersin, pigment of Fusarium lycopersici. Arch Biochem 21:457–458
69.
go back to reference Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim J-C (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698CrossRef Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim J-C (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698CrossRef
70.
go back to reference Zhan J, Burns AM, Liu MX, Faeth SH, Gunatilaka AAL (2007) Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J Nat Prod 70:227–232CrossRef Zhan J, Burns AM, Liu MX, Faeth SH, Gunatilaka AAL (2007) Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J Nat Prod 70:227–232CrossRef
71.
go back to reference Sørensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618CrossRef Sørensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618CrossRef
72.
go back to reference Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Micro + 41:503–507 Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Micro + 41:503–507
73.
go back to reference Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi W et al (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot Cell 4:1926–1933CrossRef Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi W et al (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot Cell 4:1926–1933CrossRef
74.
go back to reference Parisot D, Devys M, Barbier M (1990) Naphthoquinone pigments related to fusarubin from the fungus Fusarium solani (Mart) Sacc. Microbios 64:31–47 Parisot D, Devys M, Barbier M (1990) Naphthoquinone pigments related to fusarubin from the fungus Fusarium solani (Mart) Sacc. Microbios 64:31–47
75.
go back to reference Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532CrossRef Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532CrossRef
76.
go back to reference Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10CrossRef Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10CrossRef
77.
go back to reference Lin YR, Lo CT, Li SY, Peng KC (2012) Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem 60:2123–2128CrossRef Lin YR, Lo CT, Li SY, Peng KC (2012) Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem 60:2123–2128CrossRef
78.
go back to reference Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711 Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711
79.
go back to reference Durán N, Teixeira MFS, de Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66CrossRef Durán N, Teixeira MFS, de Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66CrossRef
80.
go back to reference Andersen B, Dongo A, Pryor BM (2008) Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol Res 112:241–250CrossRef Andersen B, Dongo A, Pryor BM (2008) Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol Res 112:241–250CrossRef
81.
go back to reference Peciulyte R, Kacergius A (2012) Lecanicillium aphanocladii – a new specie to the mycoflora of Lithuania and a new pathogen of tree leaves mining insects. Bot Lith 18:133–146 Peciulyte R, Kacergius A (2012) Lecanicillium aphanocladii – a new specie to the mycoflora of Lithuania and a new pathogen of tree leaves mining insects. Bot Lith 18:133–146
82.
go back to reference Unagul P, Wongsa P, Kittakoop P, Intamas S, Srikitikulchai P, Tanticharoen M (2005) Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BOC 1869. J Ind Microbiol Biotechnol 32:135–140CrossRef Unagul P, Wongsa P, Kittakoop P, Intamas S, Srikitikulchai P, Tanticharoen M (2005) Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BOC 1869. J Ind Microbiol Biotechnol 32:135–140CrossRef
83.
go back to reference Vining LC, Kelleher WJ, Schwarting AE (1962) Oosporein production by a strain of Beauvaria bassiana originally identified as Amanita muscaria. Can J Microbiol 8:931–933CrossRef Vining LC, Kelleher WJ, Schwarting AE (1962) Oosporein production by a strain of Beauvaria bassiana originally identified as Amanita muscaria. Can J Microbiol 8:931–933CrossRef
84.
go back to reference Souza PN, Grigoletto TL, de Moraes LA, Abreu LM, Guimarães LH, Santos CR, Galvão LR, Cardoso PG (2015) Production and chemical characterization of pigments in filamentous fungi. Microbiology. doi:10.1099/mic.0.000168 Souza PN, Grigoletto TL, de Moraes LA, Abreu LM, Guimarães LH, Santos CR, Galvão LR, Cardoso PG (2015) Production and chemical characterization of pigments in filamentous fungi. Microbiology. doi:10.1099/mic.0.000168
85.
go back to reference El Basyouni SH, Brewer D, Vining LC (1968) Pigments of the genus Beauvaria. Canad J Bot 46:441–448CrossRef El Basyouni SH, Brewer D, Vining LC (1968) Pigments of the genus Beauvaria. Canad J Bot 46:441–448CrossRef
86.
go back to reference Watt C-K, McInnes AG, Smith DG, Wright JLC, Vining LC (1977) The yellow pigments of Beauvaria species. Structures of tenellin and bassianin. Canad J Chem 55:4090–4098CrossRef Watt C-K, McInnes AG, Smith DG, Wright JLC, Vining LC (1977) The yellow pigments of Beauvaria species. Structures of tenellin and bassianin. Canad J Chem 55:4090–4098CrossRef
87.
go back to reference Goldberg I, Rokem JS (2009) Organic and fatty acid production. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic, Oxford Goldberg I, Rokem JS (2009) Organic and fatty acid production. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic, Oxford
88.
go back to reference Kornsakulkarn J, Thongpanchang C, Lapanun S, Srichomthong K (2009) Isocoumarin glucosides from the scale insect fungus Torrubiella tenuis BCC 12732. J Nat Prod 72:1341–1343CrossRef Kornsakulkarn J, Thongpanchang C, Lapanun S, Srichomthong K (2009) Isocoumarin glucosides from the scale insect fungus Torrubiella tenuis BCC 12732. J Nat Prod 72:1341–1343CrossRef
89.
go back to reference Isaka M, Chinthanom P, Supothina S, Tobwor P, Hywel-Jones NL (2010) Pyridone and tetramic acid alkaloids from the spider pathogenic fungus Torrubiella sp. BCC 2165. J Nat Prod 73:2057–2060CrossRef Isaka M, Chinthanom P, Supothina S, Tobwor P, Hywel-Jones NL (2010) Pyridone and tetramic acid alkaloids from the spider pathogenic fungus Torrubiella sp. BCC 2165. J Nat Prod 73:2057–2060CrossRef
90.
go back to reference Stadler M, Hellwig V (2005) Chemotaxonomy of the Xylariaceae and remarkable bioactive compounds from Xylariales and their associated asexual stages. Recent Res Dev Phytochem 9:41–93 Stadler M, Hellwig V (2005) Chemotaxonomy of the Xylariaceae and remarkable bioactive compounds from Xylariales and their associated asexual stages. Recent Res Dev Phytochem 9:41–93
91.
go back to reference Stadler M, Hellwig V (2004) PCR-based data and secondary metabolites as chemotaxonomic markers in high throughput screening for bioactive compounds from fungi handbook of industrial mycology. In: Zhiqiang A (ed) Marcel handbook of industrial mycology. Dekker, New York Stadler M, Hellwig V (2004) PCR-based data and secondary metabolites as chemotaxonomic markers in high throughput screening for bioactive compounds from fungi handbook of industrial mycology. In: Zhiqiang A (ed) Marcel handbook of industrial mycology. Dekker, New York
92.
go back to reference Stadler M, Fournier J (2006) Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae (Xylariaceae). Rev Iberoam Micol 23:160–170CrossRef Stadler M, Fournier J (2006) Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae (Xylariaceae). Rev Iberoam Micol 23:160–170CrossRef
93.
go back to reference Kuhnert E, Heitkämper S, Fournier J, Surup F, Stadler M (2014) Hypoxyvermelhotins A–C, new pigments from Hypoxylon lechatii sp. nov. Fungal Biol 118:242–252CrossRef Kuhnert E, Heitkämper S, Fournier J, Surup F, Stadler M (2014) Hypoxyvermelhotins A–C, new pigments from Hypoxylon lechatii sp. nov. Fungal Biol 118:242–252CrossRef
94.
go back to reference Kuhnert E, Surup F, Herrmann J, Huch V, Müller R, Stadler M (2015) Rickenyls A–E, antioxidative terphenyls from the fungus Hypoxylon rickii (Xylariaceae, Ascomycota). Phytochemistry 118:68–73CrossRef Kuhnert E, Surup F, Herrmann J, Huch V, Müller R, Stadler M (2015) Rickenyls A–E, antioxidative terphenyls from the fungus Hypoxylon rickii (Xylariaceae, Ascomycota). Phytochemistry 118:68–73CrossRef
95.
go back to reference Kuhnert E, Surup F, Wiebach V, Bernecker S, Stadler M (2015) Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii. Phytochemistry 117:116–122CrossRef Kuhnert E, Surup F, Wiebach V, Bernecker S, Stadler M (2015) Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii. Phytochemistry 117:116–122CrossRef
96.
go back to reference Stadler M, Fournier J, Quang DN, Akulov AY (2007) Metabolomic studies on the chemical ecology of the Xylariaceae (Ascomycota). Nat Prod Commun 2:287–304 Stadler M, Fournier J, Quang DN, Akulov AY (2007) Metabolomic studies on the chemical ecology of the Xylariaceae (Ascomycota). Nat Prod Commun 2:287–304
97.
go back to reference Steglich W, Klaar M, Furtner W (1974) (+)-Mitorubrin derivatives from Hypoxylon fragiforme. Phytochemistry 13:2874–2875CrossRef Steglich W, Klaar M, Furtner W (1974) (+)-Mitorubrin derivatives from Hypoxylon fragiforme. Phytochemistry 13:2874–2875CrossRef
98.
go back to reference Anderson JR, Edwards RL, Whalley AJS (1983) Metabolites of the higher fungi. Part 21. 3-Methyl-3,4-dihydroisocoumarins and related compounds from the ascomycete family Xylariaceae. J Chem Soc Perkin Trans 1:2185–2192CrossRef Anderson JR, Edwards RL, Whalley AJS (1983) Metabolites of the higher fungi. Part 21. 3-Methyl-3,4-dihydroisocoumarins and related compounds from the ascomycete family Xylariaceae. J Chem Soc Perkin Trans 1:2185–2192CrossRef
99.
go back to reference Edwards RL, Fawcett V, Maitland DJ, Nettleton R, Shields L, Whalley AJS (1991) Hypoxyxylerone. A novel green pigment from the fungus Hypoxylon fragiforme (pers.: Fries) Kickx. J Chem Soc Chem Commun 15:1009–1010CrossRef Edwards RL, Fawcett V, Maitland DJ, Nettleton R, Shields L, Whalley AJS (1991) Hypoxyxylerone. A novel green pigment from the fungus Hypoxylon fragiforme (pers.: Fries) Kickx. J Chem Soc Chem Commun 15:1009–1010CrossRef
100.
go back to reference Sir E, Kuhnert E, Surup F, Hyde K, Stadler M (2015) Discovery of new mitorubrin derivatives from Hypoxylon fulvo-sulphureum sp. nov. (Ascomycota, Xylariales). Mycol Progress 14:1–12CrossRef Sir E, Kuhnert E, Surup F, Hyde K, Stadler M (2015) Discovery of new mitorubrin derivatives from Hypoxylon fulvo-sulphureum sp. nov. (Ascomycota, Xylariales). Mycol Progress 14:1–12CrossRef
101.
go back to reference Bodo B, Tih RG, Davoust D, Jacquemin H (1983) Hypoxylone, a naphthyl-naphthoquinone pigment from the fungus Hypoxylon sclerophaeum. Phytochemistry 22:2579–2581CrossRef Bodo B, Tih RG, Davoust D, Jacquemin H (1983) Hypoxylone, a naphthyl-naphthoquinone pigment from the fungus Hypoxylon sclerophaeum. Phytochemistry 22:2579–2581CrossRef
102.
go back to reference Kuhnert E, Surup F, Sir E, Lambert C, Hyde K, Hladki A, Romero A, Stadler M (2015) Lenormandins A-G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii sp. nov., recognised by chemotaxonomic data. Fungal Biol 71:165–184 Kuhnert E, Surup F, Sir E, Lambert C, Hyde K, Hladki A, Romero A, Stadler M (2015) Lenormandins A-G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii sp. nov., recognised by chemotaxonomic data. Fungal Biol 71:165–184
103.
go back to reference Stadler M, Fournier J, Granmo A, Beltrán-Tejera E (2008) The “red Hypoxylons” of the temperate and subtropical Northern hemisphere. N Am Fungi 3:73–125CrossRef Stadler M, Fournier J, Granmo A, Beltrán-Tejera E (2008) The “red Hypoxylons” of the temperate and subtropical Northern hemisphere. N Am Fungi 3:73–125CrossRef
104.
go back to reference Anderson R (2008) Hypoxylon in Britain and Ireland. 2. Hypoxylon rubiginosum and its allies. Field Mycol 9:41–48CrossRef Anderson R (2008) Hypoxylon in Britain and Ireland. 2. Hypoxylon rubiginosum and its allies. Field Mycol 9:41–48CrossRef
105.
go back to reference Greenhalgh GN, Whalley AJS (1970) Stromal pigments of some species of Hypoxylon. T Brit Mycol Soc 55:89–96CrossRef Greenhalgh GN, Whalley AJS (1970) Stromal pigments of some species of Hypoxylon. T Brit Mycol Soc 55:89–96CrossRef
106.
go back to reference Læssøe T, Srikitikulchai P, Fournier J, Köpcke B, Stadler M (2010) Lepraric acid derivatives as chemotaxonomic markers in Hypoxylon aeruginosum, Chlorostroma subcubisporum and C. cyaninum sp. nov. Fungal Biol 114:481–489CrossRef Læssøe T, Srikitikulchai P, Fournier J, Köpcke B, Stadler M (2010) Lepraric acid derivatives as chemotaxonomic markers in Hypoxylon aeruginosum, Chlorostroma subcubisporum and C. cyaninum sp. nov. Fungal Biol 114:481–489CrossRef
107.
go back to reference Ellis GP (1977) Naturally occurring chromones (chapter VII). In: Ellis GP (ed) Chemistry of heterocyclic compounds: chromenes, chromanones, and chromones, vol 31. Wiley, HobokenCrossRef Ellis GP (1977) Naturally occurring chromones (chapter VII). In: Ellis GP (ed) Chemistry of heterocyclic compounds: chromenes, chromanones, and chromones, vol 31. Wiley, HobokenCrossRef
108.
go back to reference Quang DN, Hashimoto T, Fournier J, Stadler M, Radulovic N, Asakawa Y (2005) Sassafrins A-D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras. Tetrahedron 61:1743–1748CrossRef Quang DN, Hashimoto T, Fournier J, Stadler M, Radulovic N, Asakawa Y (2005) Sassafrins A-D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras. Tetrahedron 61:1743–1748CrossRef
109.
go back to reference Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M, Asakawa Y (2005) Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata. Phytochemistry 66:797–809CrossRef Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M, Asakawa Y (2005) Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata. Phytochemistry 66:797–809CrossRef
110.
go back to reference Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865CrossRef Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865CrossRef
111.
go back to reference Quang DN, Stadler M, Fournier J, Tomita A, Hashimoto T (2006) Cohaerins C–F, four azaphilones from the xylariaceous fungus Annulohypoxylon cohaerens. Tetrahedron 62:6349–6354CrossRef Quang DN, Stadler M, Fournier J, Tomita A, Hashimoto T (2006) Cohaerins C–F, four azaphilones from the xylariaceous fungus Annulohypoxylon cohaerens. Tetrahedron 62:6349–6354CrossRef
112.
go back to reference Surup F, Mohr KI, Jansen R, Stadler M (2013) Cohaerins G–K, azaphilone pigments from Annulohypoxylon cohaerens and absolute stereochemistry of cohaerins C–K. Phytochemistry 95:252–258CrossRef Surup F, Mohr KI, Jansen R, Stadler M (2013) Cohaerins G–K, azaphilone pigments from Annulohypoxylon cohaerens and absolute stereochemistry of cohaerins C–K. Phytochemistry 95:252–258CrossRef
113.
go back to reference Stadler M, Wollweber H, Fournier J (2004) A host-specific species of Hypoxylon from France, and notes on the chemotaxonomy of the “Hypoxylon rubiginosum complex”. Mycotaxon 90:187–211 Stadler M, Wollweber H, Fournier J (2004) A host-specific species of Hypoxylon from France, and notes on the chemotaxonomy of the “Hypoxylon rubiginosum complex”. Mycotaxon 90:187–211
114.
go back to reference Hellwig V, Ju Y-M, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Prog 4:39–54CrossRef Hellwig V, Ju Y-M, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Prog 4:39–54CrossRef
115.
go back to reference Spatafora JW, Blackwell M (1993) Molecular systematics of unitunicate perithecial ascomycetes: the Clavicipitales-Hypocreales connection. Mycologia 85:912–922CrossRef Spatafora JW, Blackwell M (1993) Molecular systematics of unitunicate perithecial ascomycetes: the Clavicipitales-Hypocreales connection. Mycologia 85:912–922CrossRef
116.
go back to reference Stadler M, Wollweber H, Mühlbauer A, Asakawa Y, Hashimoto T, Rogers JD, Ju Y-M, Wetzstein H-G, Tichy H-V (2001) Molecular chemotaxonomy of Daldinia and other Xylariaceae. Mycol Res 105:1191–1205CrossRef Stadler M, Wollweber H, Mühlbauer A, Asakawa Y, Hashimoto T, Rogers JD, Ju Y-M, Wetzstein H-G, Tichy H-V (2001) Molecular chemotaxonomy of Daldinia and other Xylariaceae. Mycol Res 105:1191–1205CrossRef
117.
go back to reference Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of daldinins A-C, three novel azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem Pharm Bull 42:2397–2399CrossRef Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of daldinins A-C, three novel azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem Pharm Bull 42:2397–2399CrossRef
118.
go back to reference Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15 Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15
119.
go back to reference Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A (2006) Antifungal azaphilones from the fungus Chaetomium cupreum CC3003. J Nat Prod 69:891–895CrossRef Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A (2006) Antifungal azaphilones from the fungus Chaetomium cupreum CC3003. J Nat Prod 69:891–895CrossRef
120.
go back to reference Gray RW, Whalley WB (1971) The chemistry of fungi. Part LXIII. Rubrorotiorin, a metabolite of Penicillium hirayamae Udagawa. J Chem Soc 21:3575–3577 Gray RW, Whalley WB (1971) The chemistry of fungi. Part LXIII. Rubrorotiorin, a metabolite of Penicillium hirayamae Udagawa. J Chem Soc 21:3575–3577
121.
go back to reference Takahashi M, Koyama K, Natori S (1990) Four new azaphilones from Chaetomium globosum var. flavo-viridae. Chem Pharm Bull 38:625–628CrossRef Takahashi M, Koyama K, Natori S (1990) Four new azaphilones from Chaetomium globosum var. flavo-viridae. Chem Pharm Bull 38:625–628CrossRef
122.
go back to reference Ge H-M, Zhang WY, Ding G, Saparpakorn P, Song YC, Hannongbua S, Tan RX (2008) Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture. Chem Commun 45:5978–5980. doi: 10.1039/B812144C Ge H-M, Zhang WY, Ding G, Saparpakorn P, Song YC, Hannongbua S, Tan RX (2008) Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture. Chem Commun 45:5978–5980. doi: 10.1039/B812144C
123.
go back to reference McMullin DR (2008) Structural characterization of secondary metabolites produced by fungi obtained from damp Canadian buildings. PhD dissertation, Ottawa-Carleton Institute of Chemistry, Carleton University, Ottawa McMullin DR (2008) Structural characterization of secondary metabolites produced by fungi obtained from damp Canadian buildings. PhD dissertation, Ottawa-Carleton Institute of Chemistry, Carleton University, Ottawa
124.
go back to reference McMullin DR, Sumarah MW, Blackwell BA, Miller JD (2013) New azaphilones from Chaetomium globosum isolated from the built environment. Tetrahedron Lett 54:568–572CrossRef McMullin DR, Sumarah MW, Blackwell BA, Miller JD (2013) New azaphilones from Chaetomium globosum isolated from the built environment. Tetrahedron Lett 54:568–572CrossRef
125.
go back to reference Brewer D, Jerram W, Taylor A (1968) The production of cochliodinol and a related metabolite by Chaetomium species. Can J Microbiol 14:861–866CrossRef Brewer D, Jerram W, Taylor A (1968) The production of cochliodinol and a related metabolite by Chaetomium species. Can J Microbiol 14:861–866CrossRef
126.
go back to reference Stchigel AM (2000) Estudio taxonómico de los ascomycetes del suelo. PhD Dissertation, Facultat de Medicina i Ciències de La Salut, Departament de Ciències Mèdiques Bàsiques, Unitat de Biologia i Microbiologia, Universitat Rovira i Virgili, Reus Espanya Stchigel AM (2000) Estudio taxonómico de los ascomycetes del suelo. PhD Dissertation, Facultat de Medicina i Ciències de La Salut, Departament de Ciències Mèdiques Bàsiques, Unitat de Biologia i Microbiologia, Universitat Rovira i Virgili, Reus Espanya
127.
go back to reference Mouchacca J (1999) Thermophilic fungi: present taxonomic concepts. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Springer Science & Business Media, Dordrecht Mouchacca J (1999) Thermophilic fungi: present taxonomic concepts. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Springer Science & Business Media, Dordrecht
128.
go back to reference Wijeratne EMK, Espinosa-Artiles P, Gruener R et al (2014) Thielavialides A–E, nor-spiro-azaphilones, and a bis-spiro-azaphilone from Thielavia sp. PA0001, an endophytic fungus Isolated from aeroponically grown Physalis alkekengi. J Nat Prod 77:1467–1472CrossRef Wijeratne EMK, Espinosa-Artiles P, Gruener R et al (2014) Thielavialides A–E, nor-spiro-azaphilones, and a bis-spiro-azaphilone from Thielavia sp. PA0001, an endophytic fungus Isolated from aeroponically grown Physalis alkekengi. J Nat Prod 77:1467–1472CrossRef
129.
go back to reference Wang S, Li X-M, Teuscher F, Li D, Diesel A, Ebel R (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625CrossRef Wang S, Li X-M, Teuscher F, Li D, Diesel A, Ebel R (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625CrossRef
130.
go back to reference Zalokar M (1957) Variations in the production of carotenoids in Neurospora. Arch Biochem Biophys 70:561–567CrossRef Zalokar M (1957) Variations in the production of carotenoids in Neurospora. Arch Biochem Biophys 70:561–567CrossRef
131.
go back to reference Kritsky MS, Sokolovsky VY, Belozerskaya TA, Chernysheva EK (1982) Relationship between cyclic AMP level and accumulation of carotenoid pigments in Neurospora crassa. Arch Microbiol 133:206–208CrossRef Kritsky MS, Sokolovsky VY, Belozerskaya TA, Chernysheva EK (1982) Relationship between cyclic AMP level and accumulation of carotenoid pigments in Neurospora crassa. Arch Microbiol 133:206–208CrossRef
132.
go back to reference Priatni S (2014) Potential production of carotenoids from Neurospora. Bioscience 6:63–68 Priatni S (2014) Potential production of carotenoids from Neurospora. Bioscience 6:63–68
133.
go back to reference Yan ZW, Wang CG, Lin JG, Cai J (2013) Medium optimization using mathematical statistics for production of beta-carotene by Blakeslea trispora and fermenting process regulation. Food Sci Biotechnol 22:1667–1673CrossRef Yan ZW, Wang CG, Lin JG, Cai J (2013) Medium optimization using mathematical statistics for production of beta-carotene by Blakeslea trispora and fermenting process regulation. Food Sci Biotechnol 22:1667–1673CrossRef
134.
go back to reference Wang JF, Liu XJ, Liu RS, Li HM, Tang YJ (2012) Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (-). Bioprocess Biosyst Eng 35:553–564CrossRef Wang JF, Liu XJ, Liu RS, Li HM, Tang YJ (2012) Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (-). Bioprocess Biosyst Eng 35:553–564CrossRef
135.
go back to reference Pohl U, Dohrmann U, Raugei G, Russo VEA (1984) Influence of blue-light on the accumulation of carotenoids in Phycomyces blakesleeanus. Ber Deutsch Bot Ges 97:327–333 Pohl U, Dohrmann U, Raugei G, Russo VEA (1984) Influence of blue-light on the accumulation of carotenoids in Phycomyces blakesleeanus. Ber Deutsch Bot Ges 97:327–333
136.
go back to reference Fraser PD, Ruiz Hidalgo MJ, Lopez Matas MA, Alvarez MI, Eslava AP, Bramley PM (1996) Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta 1289:203–208CrossRef Fraser PD, Ruiz Hidalgo MJ, Lopez Matas MA, Alvarez MI, Eslava AP, Bramley PM (1996) Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta 1289:203–208CrossRef
137.
go back to reference Wang Q, Feng LR, Luo W, Li HG, Zhou Y, Yu XB (2015) Effect of inoculation process on lycopene production by Blakeslea trispora in a stirred-tank reactor. Appl Biochem Biotechnol 175:770–779CrossRef Wang Q, Feng LR, Luo W, Li HG, Zhou Y, Yu XB (2015) Effect of inoculation process on lycopene production by Blakeslea trispora in a stirred-tank reactor. Appl Biochem Biotechnol 175:770–779CrossRef
138.
go back to reference Ebel R (2010) Natural product diversity from marine fungi. In: Mander L, Liu HW (eds) Comprehensive natural products II: chemistry and biology. Elsevier, Oxford Ebel R (2010) Natural product diversity from marine fungi. In: Mander L, Liu HW (eds) Comprehensive natural products II: chemistry and biology. Elsevier, Oxford
139.
go back to reference Kim SK (2013) Marine microbiology: bioactive compounds and biotechnological applications, 1st edn. Wiley-VCH, WeinheimCrossRef Kim SK (2013) Marine microbiology: bioactive compounds and biotechnological applications, 1st edn. Wiley-VCH, WeinheimCrossRef
140.
go back to reference Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490CrossRef Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490CrossRef
141.
go back to reference Saleem M, Nazir M (2015) Chapter 9 – Bioactive natural products from marine-derived fungi: an update. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 45. Elsevier, Amsterdam Saleem M, Nazir M (2015) Chapter 9 – Bioactive natural products from marine-derived fungi: an update. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 45. Elsevier, Amsterdam
142.
go back to reference Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. In: Southward AJ, Tyler P, Young CM, Fuiman LA (eds) Advances in marine biology, vol 40. Academic, London Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. In: Southward AJ, Tyler P, Young CM, Fuiman LA (eds) Advances in marine biology, vol 40. Academic, London
143.
144.
go back to reference Pagano MC, Dhar PP (2015) Fungal pigments. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal biomolecules: sources, applications and recent developments. Wiley, Chichester Pagano MC, Dhar PP (2015) Fungal pigments. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal biomolecules: sources, applications and recent developments. Wiley, Chichester
145.
go back to reference Hiort J, Maksimenka K, Reichert M, Perović-Ottstadt S, Lin WH, Wray V, Steube K, Schaumann K, Weber H, Proksch P, Ebel R et al (2004) New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod 67:1532–1543CrossRef Hiort J, Maksimenka K, Reichert M, Perović-Ottstadt S, Lin WH, Wray V, Steube K, Schaumann K, Weber H, Proksch P, Ebel R et al (2004) New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod 67:1532–1543CrossRef
146.
go back to reference Chooi YH, Tang Y (2012) Navigating the fungal polyketide chemical space: from genes to molecules. J Org Chem 77:9933–9953. doi:10.1021/jo301592kCrossRef Chooi YH, Tang Y (2012) Navigating the fungal polyketide chemical space: from genes to molecules. J Org Chem 77:9933–9953. doi:10.1021/jo301592kCrossRef
147.
go back to reference Sanchez JF, Somoza AD, Keller NP, Wang CCC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29:351–371CrossRef Sanchez JF, Somoza AD, Keller NP, Wang CCC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29:351–371CrossRef
148.
go back to reference Cacho RA, Tang Y, Chooi YH (2015) Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 5:article 774. doi: 10.3389/fmicb.2014.00774 Cacho RA, Tang Y, Chooi YH (2015) Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 5:article 774. doi: 10.3389/fmicb.2014.00774
149.
go back to reference Turner WB (1971) Fungal metabolites. Academic, London Turner WB (1971) Fungal metabolites. Academic, London
150.
go back to reference Turner WB, Aldridge DC (1983) Fungal metabolites, vol 2. Academic, London Turner WB, Aldridge DC (1983) Fungal metabolites, vol 2. Academic, London
151.
go back to reference Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). Prog Chem Org Nat Prod 51:1–317 Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). Prog Chem Org Nat Prod 51:1–317
152.
go back to reference Sturdikova M, Slugen D, Lesova K, Rosenberg M (2000) Mikrobialna produkcia farbnych azaphilonovych metabolitov. Chem Listy 94:105–110 Sturdikova M, Slugen D, Lesova K, Rosenberg M (2000) Mikrobialna produkcia farbnych azaphilonovych metabolitov. Chem Listy 94:105–110
153.
go back to reference Zhu J, Grigoriadis NP, Lee JP, Porco JA Jr (2005) Synthesis of the azaphilones using copper-mediated enantioselective oxidative dearomatization. J Am Chem Soc 127:9342–9343CrossRef Zhu J, Grigoriadis NP, Lee JP, Porco JA Jr (2005) Synthesis of the azaphilones using copper-mediated enantioselective oxidative dearomatization. J Am Chem Soc 127:9342–9343CrossRef
154.
go back to reference Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, Huang R, Zhang K (2006) New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiol Lett 264:65–69CrossRef Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, Huang R, Zhang K (2006) New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiol Lett 264:65–69CrossRef
155.
go back to reference Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–334CrossRef Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–334CrossRef
156.
go back to reference Hajjaj H, Klaebe A, Loret MO, Goma G, Blanc PJ, Francois J (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol 65:311–314 Hajjaj H, Klaebe A, Loret MO, Goma G, Blanc PJ, Francois J (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol 65:311–314
157.
go back to reference Velisek J, Davidek J, Cejpek K (2008) Biosynthesis of food constituents: natural pigments. Part 2- a review. Czech J Food Sci 26:73–98 Velisek J, Davidek J, Cejpek K (2008) Biosynthesis of food constituents: natural pigments. Part 2- a review. Czech J Food Sci 26:73–98
158.
go back to reference Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575CrossRef Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575CrossRef
159.
go back to reference Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458CrossRef Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458CrossRef
160.
go back to reference Dufossé L (2014) Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family. Food Res Int 65:132–136CrossRef Dufossé L (2014) Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family. Food Res Int 65:132–136CrossRef
161.
go back to reference Hunger K (2003) Indusrial dyes. Chemistry, properties, applications. Wiley-VCH, Weinheim Hunger K (2003) Indusrial dyes. Chemistry, properties, applications. Wiley-VCH, Weinheim
162.
go back to reference Hanson JR (2003) Natural products: the secondary metabolites. The Royal Society of Chemistry, Cambridge Hanson JR (2003) Natural products: the secondary metabolites. The Royal Society of Chemistry, Cambridge
163.
go back to reference Bringmann G, Irmer A, Feineis D, Gulder TAM, Fiedler H-P (2009) Convergence in the biosynthesis of acetogenic natural products from plants, fungi, and bacteria. Phytochemistry 70:1776–1786CrossRef Bringmann G, Irmer A, Feineis D, Gulder TAM, Fiedler H-P (2009) Convergence in the biosynthesis of acetogenic natural products from plants, fungi, and bacteria. Phytochemistry 70:1776–1786CrossRef
164.
go back to reference Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373CrossRef Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373CrossRef
165.
go back to reference Hansen FT, Sørensen JL, Giese H, Sondergaard TE, Frandsen RJN (2012) Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium. Int J Food Microbiol 155:128–136CrossRef Hansen FT, Sørensen JL, Giese H, Sondergaard TE, Frandsen RJN (2012) Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium. Int J Food Microbiol 155:128–136CrossRef
166.
go back to reference Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475. doi:10.1371/journal.ppat.1003475CrossRef Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475. doi:10.1371/journal.ppat.1003475CrossRef
167.
go back to reference Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CM et al (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20:1055–1066CrossRef Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CM et al (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20:1055–1066CrossRef
168.
go back to reference Von Bargen KW, Niehaus E-M, Krug I, Bergander K, Würthwein E-U, Tudzynski B, Humpf H-U (2015) Isolation and structure elucidation of fujikurins A–D: products of the PKS19 gene cluster in Fusarium fujikuroi. J Nat Prod 78:1809–1815CrossRef Von Bargen KW, Niehaus E-M, Krug I, Bergander K, Würthwein E-U, Tudzynski B, Humpf H-U (2015) Isolation and structure elucidation of fujikurins A–D: products of the PKS19 gene cluster in Fusarium fujikuroi. J Nat Prod 78:1809–1815CrossRef
169.
go back to reference Linnemannstöns P, Schulte J, del Mar PM, Proctor RH, Avalos J, Tudzynski B (2002) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:134–148CrossRef Linnemannstöns P, Schulte J, del Mar PM, Proctor RH, Avalos J, Tudzynski B (2002) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:134–148CrossRef
170.
go back to reference Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Köhler J, Krug I, Tudzynski B, Hans-Ulrich Humpf H-U (2015) Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genet Biol 84:26–36CrossRef Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Köhler J, Krug I, Tudzynski B, Hans-Ulrich Humpf H-U (2015) Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genet Biol 84:26–36CrossRef
171.
go back to reference Brown DW, Butchko RAE, Proctor RH (2008) Genomic analysis of Fusarium verticillioides. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1158–1165CrossRef Brown DW, Butchko RAE, Proctor RH (2008) Genomic analysis of Fusarium verticillioides. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1158–1165CrossRef
172.
go back to reference Ma SM, Zhan J, Watanabe K, Xie X, Zhang W, Wang CC, Tang Y (2007) Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. J Am Chem Soc 129:10642–10643CrossRef Ma SM, Zhan J, Watanabe K, Xie X, Zhang W, Wang CC, Tang Y (2007) Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. J Am Chem Soc 129:10642–10643CrossRef
173.
go back to reference Jin J-M, Lee J, Lee Y-W (2010) Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiol Lett 302:197–202 Jin J-M, Lee J, Lee Y-W (2010) Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiol Lett 302:197–202
174.
go back to reference Chang JJ, Thia C, Lin HY, Liu HL, Ho FJ, Wu JT, Shih MC, Li WH, Huan CC (2015) Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol 184:2–8CrossRef Chang JJ, Thia C, Lin HY, Liu HL, Ho FJ, Wu JT, Shih MC, Li WH, Huan CC (2015) Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol 184:2–8CrossRef
175.
go back to reference Velayos A, Fuentes-Vicente M, Aguilar-Elena R, Eslava AP, Iturriaga EA (2004) A novel fungal prenyl diphosphate synthase in the dimorphic zygomycete Mucor circinelloides. Curr Genet 45:371–377CrossRef Velayos A, Fuentes-Vicente M, Aguilar-Elena R, Eslava AP, Iturriaga EA (2004) A novel fungal prenyl diphosphate synthase in the dimorphic zygomycete Mucor circinelloides. Curr Genet 45:371–377CrossRef
176.
go back to reference Duran N, De Conti R, Teixeira MFS (2009) Pigments from fungi: industrial perspective. In: Rai M (ed) Advances in fungal biotechnology. I.K. International Publishing House, New Delhi Duran N, De Conti R, Teixeira MFS (2009) Pigments from fungi: industrial perspective. In: Rai M (ed) Advances in fungal biotechnology. I.K. International Publishing House, New Delhi
179.
go back to reference Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24:965–972CrossRef Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24:965–972CrossRef
180.
go back to reference Cho A, Yun H, Park J, Lee S, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 28:4–35 Cho A, Yun H, Park J, Lee S, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 28:4–35
181.
go back to reference Carbonell P, Parutto P, Baudier C, Junot C, Faulon JL (2014) Retropath: automated pipeline for embedded metabolic circuits. ACS Synth Biol 3:565–577CrossRef Carbonell P, Parutto P, Baudier C, Junot C, Faulon JL (2014) Retropath: automated pipeline for embedded metabolic circuits. ACS Synth Biol 3:565–577CrossRef
182.
go back to reference Hanlon S, Rizzo J, Tatomer D, Lieb J, Buck M (2011) The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae. PLoS One 6:e19060. doi: 10.1371/journal.pone.0019060. Hanlon S, Rizzo J, Tatomer D, Lieb J, Buck M (2011) The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae. PLoS One 6:e19060. doi: 10.1371/journal.pone.0019060.
183.
go back to reference Zhou H, Cheng JS, Wang BL, Fink GR (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622CrossRef Zhou H, Cheng JS, Wang BL, Fink GR (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622CrossRef
184.
go back to reference Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182CrossRef Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182CrossRef
185.
go back to reference Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J (2014) Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol 156:232–239CrossRef Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J (2014) Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol 156:232–239CrossRef
186.
go back to reference Çakar Z, Seker U, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578CrossRef Çakar Z, Seker U, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578CrossRef
187.
go back to reference Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRef Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRef
188.
go back to reference Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76CrossRef Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76CrossRef
189.
go back to reference Dai J, Mumper JR (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352CrossRef Dai J, Mumper JR (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352CrossRef
190.
go back to reference Ahlawat KS, Khatkar BS (2011) Processing, food applications and safety of aloe vera products: a review. J Food Sci Technol 48:525–533CrossRef Ahlawat KS, Khatkar BS (2011) Processing, food applications and safety of aloe vera products: a review. J Food Sci Technol 48:525–533CrossRef
191.
go back to reference Hynninen PH, Räisänen R, Elovaara P, Nokelainen E (2000) Preparative isolation of anthraquinones from the fungus Dermocybe sanguinea using enzymatic hydrolysis by the endogenous β-glucosidase. Z Naturforsch 55(7–8). doi: 10.1515/znc-2000-7-820 Hynninen PH, Räisänen R, Elovaara P, Nokelainen E (2000) Preparative isolation of anthraquinones from the fungus Dermocybe sanguinea using enzymatic hydrolysis by the endogenous β-glucosidase. Z Naturforsch 55(7–8). doi: 10.1515/znc-2000-7-820
192.
go back to reference Lech K, Jarosz M (2011) Novel methodology for the extraction and identification of natural dyestuffs in historical textiles by HPLC-UV-Vis-ESI-MS. Case study: chasubles from the Wawel Cathedral collection. Anal Bioanal Chem 399:3241–3251CrossRef Lech K, Jarosz M (2011) Novel methodology for the extraction and identification of natural dyestuffs in historical textiles by HPLC-UV-Vis-ESI-MS. Case study: chasubles from the Wawel Cathedral collection. Anal Bioanal Chem 399:3241–3251CrossRef
193.
go back to reference Neagu D, Leopold L, Thonart P, Destain J, Socaciu C (2014) Enzyme-assisted extraction of carotenoids and phenolic derivatives from tomatoes. Bull UASVM Anim Sci Biotechnol 71:20–26 Neagu D, Leopold L, Thonart P, Destain J, Socaciu C (2014) Enzyme-assisted extraction of carotenoids and phenolic derivatives from tomatoes. Bull UASVM Anim Sci Biotechnol 71:20–26
194.
go back to reference Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148CrossRef Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148CrossRef
195.
go back to reference Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal Chim Acta 640:47–51CrossRef Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal Chim Acta 640:47–51CrossRef
196.
go back to reference Du F-Y, Xiao X-H, Luo X-J, Li G-K (2009) Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicial plants. Talanta 78:1177–1184CrossRef Du F-Y, Xiao X-H, Luo X-J, Li G-K (2009) Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicial plants. Talanta 78:1177–1184CrossRef
197.
go back to reference Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X (2009) Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J Sep Sci 32(20):3550–3554. doi:10.1002/jssc.200900413CrossRef Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X (2009) Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J Sep Sci 32(20):3550–3554. doi:10.1002/jssc.200900413CrossRef
198.
go back to reference Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426CrossRef Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426CrossRef
199.
go back to reference Veggi PC, Martinez J, Meireles MAA (2013) Fundamentals of microwave extraction. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds: theory and practice. Springer, New York Veggi PC, Martinez J, Meireles MAA (2013) Fundamentals of microwave extraction. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds: theory and practice. Springer, New York
200.
go back to reference Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688CrossRef Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688CrossRef
201.
go back to reference Baiano A (2014) Recovery of biomolecules from food wastes – a review. Molecules 19:14821–14842CrossRef Baiano A (2014) Recovery of biomolecules from food wastes – a review. Molecules 19:14821–14842CrossRef
202.
go back to reference Li H, Chen B, Zhang Z, Yao S (2004) Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies). Talanta 63:659–665CrossRef Li H, Chen B, Zhang Z, Yao S (2004) Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies). Talanta 63:659–665CrossRef
203.
go back to reference Mandal V, Mohan Y, Hemalatha S (2008) Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal 46:322–327CrossRef Mandal V, Mohan Y, Hemalatha S (2008) Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal 46:322–327CrossRef
204.
go back to reference Gallo M, Ferracane R, Graziani G, Ritieni A, Fogliano V (2010) Microwave assisted extracion of phenolic compounds from four different spices. Molecules 15:6365–6374CrossRef Gallo M, Ferracane R, Graziani G, Ritieni A, Fogliano V (2010) Microwave assisted extracion of phenolic compounds from four different spices. Molecules 15:6365–6374CrossRef
205.
go back to reference Hemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem 13:543–548CrossRef Hemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem 13:543–548CrossRef
206.
go back to reference Barrera Vázquez MF, Comini LR, Martini RE, Núñez Montoya SC, Bottini S, Cabrera JL (2014) Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterphyllaea pustulata Hook f. (Rubiaceae). Ultrason Sonochem 21:478–484CrossRef Barrera Vázquez MF, Comini LR, Martini RE, Núñez Montoya SC, Bottini S, Cabrera JL (2014) Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterphyllaea pustulata Hook f. (Rubiaceae). Ultrason Sonochem 21:478–484CrossRef
207.
go back to reference Borges ME, Tejera RL, Díaz L, Esparza P, Ibáñez E (2012) Natural dyes extraction from cochineal (Dactylopius coccus). New extraction methods. Food Chem 132:1855–1860CrossRef Borges ME, Tejera RL, Díaz L, Esparza P, Ibáñez E (2012) Natural dyes extraction from cochineal (Dactylopius coccus). New extraction methods. Food Chem 132:1855–1860CrossRef
208.
go back to reference Plaza M, Amigo-Benavent M, del Castillo MD, Ibáñez E, Herrero M (2010) Neoformation of antioxydants in glycation model systems treated under subcritical water extraction conditions. Food Res Int 43:1123–1129CrossRef Plaza M, Amigo-Benavent M, del Castillo MD, Ibáñez E, Herrero M (2010) Neoformation of antioxydants in glycation model systems treated under subcritical water extraction conditions. Food Res Int 43:1123–1129CrossRef
209.
go back to reference Baby KC, Ranganathan TV (2013) Enzyme-assisted extraction of bioingredients. Chem Week 59:213–224 Baby KC, Ranganathan TV (2013) Enzyme-assisted extraction of bioingredients. Chem Week 59:213–224
210.
go back to reference Gandhi K (2014) A review of ionic liquids, their limits and applications. Green Sustainable Chem 4:article ID:43349. doi:10.4236/gsc.2014.41008 Gandhi K (2014) A review of ionic liquids, their limits and applications. Green Sustainable Chem 4:article ID:43349. doi:10.4236/gsc.2014.41008
211.
go back to reference Fan Y, Chen M, Shentu C, El-Sepai F, Wang K, Zhu Y, Ye M (2009) Ionic liquids extraction of para red and sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography. Anal Chim Acta 650:65–69CrossRef Fan Y, Chen M, Shentu C, El-Sepai F, Wang K, Zhu Y, Ye M (2009) Ionic liquids extraction of para red and sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography. Anal Chim Acta 650:65–69CrossRef
212.
go back to reference Tan Z, Li F, Xu X (2012) Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep Purif Technol 98:150–157CrossRef Tan Z, Li F, Xu X (2012) Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep Purif Technol 98:150–157CrossRef
213.
go back to reference Ventura SP, Santos-Ebinuma VC, Pereira JF, Teixeira MF, Pessoa A, Coutinho JA (2013) Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. J Ind Microbiol Biotechnol 40:507–516CrossRef Ventura SP, Santos-Ebinuma VC, Pereira JF, Teixeira MF, Pessoa A, Coutinho JA (2013) Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. J Ind Microbiol Biotechnol 40:507–516CrossRef
214.
go back to reference Shen L, Zhang X, Liu M, Wang Z (2014) Transferring of red Monascus pigments from nonionic surfactant to hydrophobic ionic liquid by novel microemulsion extraction. Sep Purif Technol 138:34–40CrossRef Shen L, Zhang X, Liu M, Wang Z (2014) Transferring of red Monascus pigments from nonionic surfactant to hydrophobic ionic liquid by novel microemulsion extraction. Sep Purif Technol 138:34–40CrossRef
215.
go back to reference Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307CrossRef Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307CrossRef
216.
go back to reference Latha BV, Jeevaratnam K (2010) Purification and characterization of the pigments from Rhodotorula glutinis DFR-PDY isolated from natural source. Glob J Biotechnol Biochem 5:166–174 Latha BV, Jeevaratnam K (2010) Purification and characterization of the pigments from Rhodotorula glutinis DFR-PDY isolated from natural source. Glob J Biotechnol Biochem 5:166–174
217.
go back to reference Fang LZ, Qing C, Shao HJ, Yang YD, Dong ZJ, Wang F, Zhao W, Yang WQ, Liu JK (2006) Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot (Tokyo) 59:351–354CrossRef Fang LZ, Qing C, Shao HJ, Yang YD, Dong ZJ, Wang F, Zhao W, Yang WQ, Liu JK (2006) Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot (Tokyo) 59:351–354CrossRef
218.
go back to reference Thakur M, Azmi W (2013) Extraction and purification of β-carotene from filamentous fungus Mucor azygosporus. Ann Phytomed 2:79–84 Thakur M, Azmi W (2013) Extraction and purification of β-carotene from filamentous fungus Mucor azygosporus. Ann Phytomed 2:79–84
219.
go back to reference Sasanya JJ (2008) Quantification and characterization of mycotoxins, masked mycotoxins, and Fusarium graminearum pigment. PhD dissertation, North Dakota State University of Agriculture and Applied Science, Dakota Sasanya JJ (2008) Quantification and characterization of mycotoxins, masked mycotoxins, and Fusarium graminearum pigment. PhD dissertation, North Dakota State University of Agriculture and Applied Science, Dakota
222.
go back to reference Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78:1477–1491CrossRef Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78:1477–1491CrossRef
223.
go back to reference Dufossé L (2009) Microbial and microalgal carotenoids as colourants and supplements (Chapter 5). In: Britton G, Pfander H, Liaaen-Jensen S (eds) Carotenoids, vol 5, Nutrition and health. Birkhäuser, Basel Dufossé L (2009) Microbial and microalgal carotenoids as colourants and supplements (Chapter 5). In: Britton G, Pfander H, Liaaen-Jensen S (eds) Carotenoids, vol 5, Nutrition and health. Birkhäuser, Basel
224.
go back to reference Leray C (2014) Lipids and human nutrition (Chapter 3). In: Leray C (ed) Lipids: nutrition and health. CRC Press, Boca RatonCrossRef Leray C (2014) Lipids and human nutrition (Chapter 3). In: Leray C (ed) Lipids: nutrition and health. CRC Press, Boca RatonCrossRef
226.
go back to reference Horgan KA, Murphy RA (2001) Pharmaceutical and chemical commodities from fungi (Chapter 6). In: Kavanagh K (ed) Fungi: biology and applications, 2nd edn. Wiley, Chichester Horgan KA, Murphy RA (2001) Pharmaceutical and chemical commodities from fungi (Chapter 6). In: Kavanagh K (ed) Fungi: biology and applications, 2nd edn. Wiley, Chichester
227.
go back to reference Kumar A, Hari Shankar Vishwakarma HS, Singh J, Dwivedi S, Kumar M (2015) Microbial pigments: production and their applications in various industries. J Pharm Chem Biol Sci 5:203–212 Kumar A, Hari Shankar Vishwakarma HS, Singh J, Dwivedi S, Kumar M (2015) Microbial pigments: production and their applications in various industries. J Pharm Chem Biol Sci 5:203–212
228.
go back to reference Esser K, Hofrichter M (2010) The Mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research. 10. Industrial applications, 2nd edn. Springer, Berlin Esser K, Hofrichter M (2010) The Mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research. 10. Industrial applications, 2nd edn. Springer, Berlin
229.
go back to reference Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1102CrossRef Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1102CrossRef
230.
go back to reference Baranova M, Mal’a P, Burdova O, Hadbavny M, Sabolova G (2004) Effect of natural pigment of Monascus purpureus on the organoleptic characters of processed cheeses. Bull Vet Inst Pulawy 48:59–62 Baranova M, Mal’a P, Burdova O, Hadbavny M, Sabolova G (2004) Effect of natural pigment of Monascus purpureus on the organoleptic characters of processed cheeses. Bull Vet Inst Pulawy 48:59–62
231.
go back to reference Ropars J, Cruaud C, Lacoste S, Dupont J (2015) A taxonomic and ecological overview of cheese fungi. Int J Food Microbiol 155:199–210CrossRef Ropars J, Cruaud C, Lacoste S, Dupont J (2015) A taxonomic and ecological overview of cheese fungi. Int J Food Microbiol 155:199–210CrossRef
232.
go back to reference Wang CC, Chiang YM, Kuo PL, Chang JK, Hsu YL (2008) Norsolorinic acid from Aspergillus nidulans inhibits the proliferation of human breast adenocarcinoma MCF-7 cells via Fas-mediated pathway. Basic Clin Pharmacol Toxicol 102:491–497CrossRef Wang CC, Chiang YM, Kuo PL, Chang JK, Hsu YL (2008) Norsolorinic acid from Aspergillus nidulans inhibits the proliferation of human breast adenocarcinoma MCF-7 cells via Fas-mediated pathway. Basic Clin Pharmacol Toxicol 102:491–497CrossRef
233.
go back to reference Cai Y, Ding Y, Tao G, Liao X (2008) Production of 1,5-dihydroxy-3-methoxy-7-methylanthracene-9,10-dione by submerged culture of Shiraia bambusicola. J Microbiol Biotechnol 18:322–327 Cai Y, Ding Y, Tao G, Liao X (2008) Production of 1,5-dihydroxy-3-methoxy-7-methylanthracene-9,10-dione by submerged culture of Shiraia bambusicola. J Microbiol Biotechnol 18:322–327
234.
go back to reference Ahmad W, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF (2012) Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl Biochem Biotechnol 167:1220–1234CrossRef Ahmad W, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF (2012) Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl Biochem Biotechnol 167:1220–1234CrossRef
235.
go back to reference Križanec B, Le Marechal AM, Vončina E, Brodnjak-Vončina D (2005) Presence of dioxins in textile dyes and their fate during the dyeing processes. Acta Chim Slov 52:111–118 Križanec B, Le Marechal AM, Vončina E, Brodnjak-Vončina D (2005) Presence of dioxins in textile dyes and their fate during the dyeing processes. Acta Chim Slov 52:111–118
236.
go back to reference Raisanen R (2002) Anthraquinones from the fungus Dermocybe sanguinea as textile dyes. Academic dissertation, University of Helsinki Raisanen R (2002) Anthraquinones from the fungus Dermocybe sanguinea as textile dyes. Academic dissertation, University of Helsinki
237.
go back to reference Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes Pigm 75:550–555CrossRef Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes Pigm 75:550–555CrossRef
238.
go back to reference Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile dyeing. Indian J Fibre Text Res 37:68–73 Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile dyeing. Indian J Fibre Text Res 37:68–73
239.
go back to reference Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathi G (2013) Natural dye production from Thermomyces sp fungi for textile application. Indian J Fibre Text Res 38:276–279 Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathi G (2013) Natural dye production from Thermomyces sp fungi for textile application. Indian J Fibre Text Res 38:276–279
Metadata
Title
Pigments and Colorants from Filamentous Fungi
Authors
Yanis Caro
Mekala Venkatachalam
Juliana Lebeau
Mireille Fouillaud
Laurent Dufossé
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-25001-4_26