Skip to main content
Top

2015 | OriginalPaper | Chapter

7. Pin-Limited Cyberphysical Microfluidic Biochip

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

On a digital microfluidic biochip, the number of control pins used to drive electrodes is a major contributor to the fabrication cost [1]. The layout of a typical biochip is shown in Fig. 7.1a, it has three regions:
1.
Active region, where the biochemistry assays are executed; electrodes and on-chip reservoirs are fabricated in this region.
 
2.
Contact region, where the contact pads of the input pins are fabricated. Here each contact pad corresponds to one input pin of the biochip. In order to reduce the contact resistance, the area of each pad is usually larger than an electrode [1].
 
3.
Wire routing region, where metal wires are fabricated. The wires connect electrodes to the contact pads of the input pins.
 

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Chakrabarty, R. Fair, and J. Zeng, “Design tools for digital microfluidic biochips: Towards functional diversification and more than Moore” (Keynote Paper), IEEE Trans. CAD, vol. 29, pp. 1001–1017, 2010.CrossRef K. Chakrabarty, R. Fair, and J. Zeng, “Design tools for digital microfluidic biochips: Towards functional diversification and more than Moore” (Keynote Paper), IEEE Trans. CAD, vol. 29, pp. 1001–1017, 2010.CrossRef
2.
go back to reference C.-Y. Lin and Y.-W. Chang, “ILP-based pin-count aware design methodology for microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 29, Issue 9, pp. 1315–1327, 2010.CrossRef C.-Y. Lin and Y.-W. Chang, “ILP-based pin-count aware design methodology for microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 29, Issue 9, pp. 1315–1327, 2010.CrossRef
3.
go back to reference Y. Luo and K. Chakrabarty, “Design of pin-constrained general-purpose digital microfluidic biochips”, ACM/IEEE Design Automation Conference, pp. 18–25, 2012. Y. Luo and K. Chakrabarty, “Design of pin-constrained general-purpose digital microfluidic biochips”, ACM/IEEE Design Automation Conference, pp. 18–25, 2012.
5.
go back to reference Z. Xiao and E. Young, “CrossRouter: A droplet router for cross-referencing digital microfluidic biochips”, IEEE/ACM Asia South Pacific Design Automation Conference, pp. 269–274, 2010. Z. Xiao and E. Young, “CrossRouter: A droplet router for cross-referencing digital microfluidic biochips”, IEEE/ACM Asia South Pacific Design Automation Conference, pp. 269–274, 2010.
6.
go back to reference Y.-Y. Lin, E. Welch, and R. Fair, “Low voltage picoliter droplet manipulation utilizfing electrowetting-on-dielectric platforms”, Sensors and Actuators, B: Chemical, vol. 173, pp. 338–345, 2012. Y.-Y. Lin, E. Welch, and R. Fair, “Low voltage picoliter droplet manipulation utilizfing electrowetting-on-dielectric platforms”, Sensors and Actuators, B: Chemical, vol. 173, pp. 338–345, 2012.
7.
go back to reference J. Gao, X. Liu, T. Chen, P.-I. Mak, Y. Du, M. Vai, B. Lin, and R. Martins, “An intelligent digital microfluidic system with fuzzy enhanced feedback for multi-droplet manipulation”, Lab on a Chip, Issue 13, volume 13, 2013. J. Gao, X. Liu, T. Chen, P.-I. Mak, Y. Du, M. Vai, B. Lin, and R. Martins, “An intelligent digital microfluidic system with fuzzy enhanced feedback for multi-droplet manipulation”, Lab on a Chip, Issue 13, volume 13, 2013.
8.
go back to reference T. Xu and K. Chakrabarty, “Droplet-trace-based array partitioning and a pin assignment algorithm for the automated design of digital microfluidic biochips”, Proc. IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis, pp. 112–117, 2006. T. Xu and K. Chakrabarty, “Droplet-trace-based array partitioning and a pin assignment algorithm for the automated design of digital microfluidic biochips”, Proc. IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis, pp. 112–117, 2006.
9.
go back to reference T.-W. Huang, J.-W. Chang, and T.-Y. Ho, “Integrated fluidic-chip co-design methodology for digital microfluidic biochips”, Proceedings of ACM International Symposium on Physical Design, pp. 49–56, 2012. T.-W. Huang, J.-W. Chang, and T.-Y. Ho, “Integrated fluidic-chip co-design methodology for digital microfluidic biochips”, Proceedings of ACM International Symposium on Physical Design, pp. 49–56, 2012.
Metadata
Title
Pin-Limited Cyberphysical Microfluidic Biochip
Authors
Yan Luo
Krishnendu Chakrabarty
Tsung-Yi Ho
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-09006-1_7