Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

24-01-2019 | Issue 3/2019

Journal of Materials Engineering and Performance 3/2019

Planar Anisotropy, Tension–Compression Asymmetry, and Deep Drawing Behavior of Commercially Pure Titanium at Room Temperature

Journal:
Journal of Materials Engineering and Performance > Issue 3/2019
Authors:
P. Lin, Y. G. Hao, B. Y. Zhang, C. Z. Chi, X. L. Cui, J. Shen, D. S. Gao

Abstract

The planar anisotropy (PA) and tension–compression asymmetry (TCA) of the CP-Ti were investigated via uniaxial tension and compression tests at room temperature. The formability and the earing behavior of the CP-Ti sheet were studied via deep drawing experiment. The deep drawing simulations using the uniaxial tensile and the compressive curves as the hardening rules were compared with each other and with the experimental results. The CP-Ti sheet showed PA and TCA in yielding and strain hardening. The PA was characterized by the plastic strain ratio r0, r45, and r90 of 1.47, 2.06, and 2.05. The TCA showed PA, which showed tension–compression yield strength ratios of 1.12, 1.08, and 1.04 in 0°, 45°, and 90° in the rolling direction, and tensile and compressive hardening exponent ratios of 0.86, 0.8, and 0.62. The orientation distribution functions (ODFs) analysis demonstrated that the tensile and the compressive deformation textures were different and showed PA. The simulative results, including the simulated forming force and the earing profiles using the uniaxial tensile and compressive curves as the hardening rules, were not in agreement with each other. The results were not in good agreement with the experimental results, implying that the TCA had an important effect on the formability of the sheet. The TCA tended to reduce the thickness of the deep drawing parts, increase the earing ratio, and affect the drawing force.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

Journal of Materials Engineering and Performance 3/2019 Go to the issue

Premium Partner

    Image Credits