Skip to main content
Top

30-11-2024 | Original Paper

Plane curve germs and contact factorization

Authors: Joris van der Hoeven, Grégoire Lecerf

Published in: Applicable Algebra in Engineering, Communication and Computing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Given an algebraic germ of a plane curve at the origin, in terms of a bivariate polynomial, we analyze the complexity of computing an irreducible decomposition up to any given truncation order. With a suitable representation of the irreducible components, and whenever the characteristic of the ground field is zero or larger than the degree of the germ, we design a new algorithm that involves a nearly linear number of arithmetic operations in the ground field plus a small amount of irreducible univariate polynomial factorizations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abelard, S., Berardini, E., Couvreur, A., Lecerf, G.: Computing Riemann–Roch spaces via Puiseux expansions. J. Complex. 73, 101666 (2022)MathSciNetCrossRef Abelard, S., Berardini, E., Couvreur, A., Lecerf, G.: Computing Riemann–Roch spaces via Puiseux expansions. J. Complex. 73, 101666 (2022)MathSciNetCrossRef
2.
go back to reference Abhyankar, S.S.: Irreducibility criterion for germs of analytic functions of two complex variables. Adv. Math. 74(2), 190–257 (1989)MathSciNetCrossRef Abhyankar, S.S.: Irreducibility criterion for germs of analytic functions of two complex variables. Adv. Math. 74(2), 190–257 (1989)MathSciNetCrossRef
3.
go back to reference Abhyankar, S.S., Moh, T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation. I. J. Reine Angew. Math. 260, 47–83 (1973)MathSciNet Abhyankar, S.S., Moh, T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation. I. J. Reine Angew. Math. 260, 47–83 (1973)MathSciNet
4.
go back to reference Abhyankar, S.S., Moh, T.: Newton-Puiseux expansion and generalized Tschrinhausen transformation. II. J. Reine Angew. Math. 261, 29–54 (1973) Abhyankar, S.S., Moh, T.: Newton-Puiseux expansion and generalized Tschrinhausen transformation. II. J. Reine Angew. Math. 261, 29–54 (1973)
6.
go back to reference Alonso, M.E., Castro-Jiménez, F.J., Hauser, H.: Encoding algebraic power series. J. Found. Comput. Math. 18(3), 789–833 (2018)MathSciNetCrossRef Alonso, M.E., Castro-Jiménez, F.J., Hauser, H.: Encoding algebraic power series. J. Found. Comput. Math. 18(3), 789–833 (2018)MathSciNetCrossRef
7.
go back to reference Aschenbrenner, M., van den Dries, L., van der Hoeven, J.: Asymptotic Differential Algebra and Model Theory of Transseries Number 195 in Annals of Mathematics studies. Princeton University Press, New Jersey (2017) Aschenbrenner, M., van den Dries, L., van der Hoeven, J.: Asymptotic Differential Algebra and Model Theory of Transseries Number 195 in Annals of Mathematics studies. Princeton University Press, New Jersey (2017)
8.
go back to reference Bauch, J.-D., Nart, E., Stainsby, H.D.: Complexity of OM factorizations of polynomials over local fields. LMS J. Comput. Math. 16, 139–171 (2013)MathSciNetCrossRef Bauch, J.-D., Nart, E., Stainsby, H.D.: Complexity of OM factorizations of polynomials over local fields. LMS J. Comput. Math. 16, 139–171 (2013)MathSciNetCrossRef
9.
go back to reference Berthomieu, J., Lecerf, G., Quintin, G.: Polynomial root finding over local rings and application to error correcting codes. Appl. Algebra Engrg. Comm. Comput. 24(6), 413–443 (2013)MathSciNetCrossRef Berthomieu, J., Lecerf, G., Quintin, G.: Polynomial root finding over local rings and application to error correcting codes. Appl. Algebra Engrg. Comm. Comput. 24(6), 413–443 (2013)MathSciNetCrossRef
10.
go back to reference Bostan, A., Christol, G., Dumas, Ph.: Fast computation of the Nth term of an algebraic series over a finite prime field. In: Rosenkranz, M. (ed.), Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pp. 119–126. ACM, New York, NY, USA, (2016) Bostan, A., Christol, G., Dumas, Ph.: Fast computation of the Nth term of an algebraic series over a finite prime field. In: Rosenkranz, M. (ed.), Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pp. 119–126. ACM, New York, NY, USA, (2016)
11.
go back to reference Bostan, A., Chyzak, F., Lecerf, G., Salvy, B., Schost, É.: Differential equations for algebraic functions. In: Brown, C.W. (ed.) Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ISSAC ’07. ACM, New York, NY, USA, (2007) Bostan, A., Chyzak, F., Lecerf, G., Salvy, B., Schost, É.: Differential equations for algebraic functions. In: Brown, C.W. (ed.) Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ISSAC ’07. ACM, New York, NY, USA, (2007)
12.
go back to reference Bostan, A., Lecerf, G., Salvy, B., Schost, É., Wiebelt, B.: Complexity issues in bivariate polynomial factorization. In: Schicho, J. (ed.) Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC ’04, pp. 42–49, ACM Press. New York, NY, USA, (2004) Bostan, A., Lecerf, G., Salvy, B., Schost, É., Wiebelt, B.: Complexity issues in bivariate polynomial factorization. In: Schicho, J. (ed.) Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC ’04, pp. 42–49, ACM Press. New York, NY, USA, (2004)
13.
go back to reference Campillo, A., Farrán, J.I.: Symbolic Hamburger–Noether expressions of plane curves and applications to AG codes. Math. Comp. 71(240), 1759–1780 (2002)MathSciNetCrossRef Campillo, A., Farrán, J.I.: Symbolic Hamburger–Noether expressions of plane curves and applications to AG codes. Math. Comp. 71(240), 1759–1780 (2002)MathSciNetCrossRef
14.
go back to reference Cantor, D.G., Gordon, D.M.: Factoring polynomials over \(p\)-adic fields. In: Bosma, W. (ed.) Algorithmic Number Theory. 4th International Symposium, ANTS-IV Leiden, The Netherlands, July 2-7, 2000. Proceedings, volume 1838 of Lecture Notes in Comput. Sci., pp. 185–208. Springer-Verlag, (2000) Cantor, D.G., Gordon, D.M.: Factoring polynomials over \(p\)-adic fields. In: Bosma, W. (ed.) Algorithmic Number Theory. 4th International Symposium, ANTS-IV Leiden, The Netherlands, July 2-7, 2000. Proceedings, volume 1838 of Lecture Notes in Comput. Sci., pp. 185–208. Springer-Verlag, (2000)
15.
go back to reference Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28, 693–701 (1991)MathSciNetCrossRef Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28, 693–701 (1991)MathSciNetCrossRef
16.
go back to reference Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36(154), 587–592 (1981)MathSciNetCrossRef Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36(154), 587–592 (1981)MathSciNetCrossRef
17.
go back to reference Chistov, A.L.: Polynomial complexity of the Newton–Puiseux algorithm. In: Mathematical Foundations of Computer Science 1986. Proceedings of the 12th Symposium Bratislava, Czechoslovakia August 25–29, 1986, volume 233 of Lecture Notes in Comput. Sci., pp. 247–255. Springer-Verlag, (1986) Chistov, A.L.: Polynomial complexity of the Newton–Puiseux algorithm. In: Mathematical Foundations of Computer Science 1986. Proceedings of the 12th Symposium Bratislava, Czechoslovakia August 25–29, 1986, volume 233 of Lecture Notes in Comput. Sci., pp. 247–255. Springer-Verlag, (1986)
18.
go back to reference Chistov, A.L.: Efficient factoring polynomials over local fields and its applications. In: Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990, vol. 1, pp. 1509–1519. Springer-Verlag, (1991) Chistov, A.L.: Efficient factoring polynomials over local fields and its applications. In: Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990, vol. 1, pp. 1509–1519. Springer-Verlag, (1991)
19.
go back to reference Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. I. J. Complex. 2(4), 271–294 (1986)MathSciNetCrossRef Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. I. J. Complex. 2(4), 271–294 (1986)MathSciNetCrossRef
20.
go back to reference Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. II. J. Complex. 3(1), 1–25 (1987)MathSciNetCrossRef Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. II. J. Complex. 3(1), 1–25 (1987)MathSciNetCrossRef
21.
go back to reference Cohen, H.: A course in computational algebraic number theory. Graduate Texts in Mathematics. Springer, Berlin, Heidelberg (1993)CrossRef Cohen, H.: A course in computational algebraic number theory. Graduate Texts in Mathematics. Springer, Berlin, Heidelberg (1993)CrossRef
22.
go back to reference Cossart, V., Moreno-Socías, G.: Racines approchées, suites génératrices, suffisance des jets. Annales de la Faculté des sciences de Toulouse \(6_{e}\) série, 14(3):353–394, (2005) Cossart, V., Moreno-Socías, G.: Racines approchées, suites génératrices, suffisance des jets. Annales de la Faculté des sciences de Toulouse \(6_{e}\) série, 14(3):353–394, (2005)
23.
24.
go back to reference Dwivedi, A., Saxena, N.: Computing Igusa’s local zeta function of univariates in deterministic polynomial-time. In: Galbraith, S.D. (ed.) ANTS XIV. Proceedings of the Fourteenth Algorithmic Number Theory Symposium, volume 4 of The Open Book Series, pp. 197–214. MSP, Berkeley, CA, USA (2020) Dwivedi, A., Saxena, N.: Computing Igusa’s local zeta function of univariates in deterministic polynomial-time. In: Galbraith, S.D. (ed.) ANTS XIV. Proceedings of the Fourteenth Algorithmic Number Theory Symposium, volume 4 of The Open Book Series, pp. 197–214. MSP, Berkeley, CA, USA (2020)
25.
go back to reference Fernández, J., Guàrdia, J., Montes, J., Nart, E.: Residual ideals of MacLane valuations. J. Algebra 427, 30–75 (2015)MathSciNetCrossRef Fernández, J., Guàrdia, J., Montes, J., Nart, E.: Residual ideals of MacLane valuations. J. Algebra 427, 30–75 (2015)MathSciNetCrossRef
26.
go back to reference Ford, D., Letard, P.: Implementing the Round Four maximal order algorithm. J. Théor. Nombres Bordeaux 6(1), 39–80 (1994)MathSciNetCrossRef Ford, D., Letard, P.: Implementing the Round Four maximal order algorithm. J. Théor. Nombres Bordeaux 6(1), 39–80 (1994)MathSciNetCrossRef
27.
go back to reference Ford, D., Pauli, S., Roblot, X.-F.: A fast algorithm for polynomial factorization over \({\mathbb{Q} }_p\). J. Théor. Nombres Bordeaux 14(1), 151–169 (2002)MathSciNetCrossRef Ford, D., Pauli, S., Roblot, X.-F.: A fast algorithm for polynomial factorization over \({\mathbb{Q} }_p\). J. Théor. Nombres Bordeaux 14(1), 151–169 (2002)MathSciNetCrossRef
28.
go back to reference Ford, D., Veres, O.: On the complexity of the Montes ideal factorization algorithm. In: Hanrot, G., Morain, F., Thomé, E. (eds.), Algorithmic Number Theory. 9th International Symposium, ANTS-IX, Nancy, France, July 19-23, 2010. Proceedings, volume 6197 of Lecture Notes in Comput. Sci., pp. 174–185. Springer-Verlag, (2010) Ford, D., Veres, O.: On the complexity of the Montes ideal factorization algorithm. In: Hanrot, G., Morain, F., Thomé, E. (eds.), Algorithmic Number Theory. 9th International Symposium, ANTS-IX, Nancy, France, July 19-23, 2010. Proceedings, volume 6197 of Lecture Notes in Comput. Sci., pp. 174–185. Springer-Verlag, (2010)
29.
go back to reference Fröhlich, A., Shepherdson, J.C.: On the factorisation of polynomials in a finite number of steps. Math. Z. 62, 331–334 (1955)MathSciNetCrossRef Fröhlich, A., Shepherdson, J.C.: On the factorisation of polynomials in a finite number of steps. Math. Z. 62, 331–334 (1955)MathSciNetCrossRef
30.
go back to reference Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. R. Soc. Lond. Ser. A. 248, 407–432 (1956)MathSciNetCrossRef Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. R. Soc. Lond. Ser. A. 248, 407–432 (1956)MathSciNetCrossRef
31.
go back to reference von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. 3rd edn., Cambridge University Press, New York (2013) von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. 3rd edn., Cambridge University Press, New York (2013)
32.
go back to reference von Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polynomials. Comput. Complex. 2(3), 187–224 (1992)MathSciNetCrossRef von Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polynomials. Comput. Complex. 2(3), 187–224 (1992)MathSciNetCrossRef
33.
go back to reference Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer-Verlag, Berlin Heidelberg (2002)CrossRef Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer-Verlag, Berlin Heidelberg (2002)CrossRef
34.
35.
go back to reference Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields. J. Théor. Nombres Bordeaux 23(3), 667–696 (2011)MathSciNetCrossRef Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields. J. Théor. Nombres Bordeaux 23(3), 667–696 (2011)MathSciNetCrossRef
36.
go back to reference Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364(1), 361–416 (2012)MathSciNetCrossRef Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364(1), 361–416 (2012)MathSciNetCrossRef
37.
go back to reference Guàrdia, J., Montes, J., Nart, E.: A new computational approach to ideal theory in number fields. Found. Comput. Math. 13(5), 729–762 (2013)MathSciNetCrossRef Guàrdia, J., Montes, J., Nart, E.: A new computational approach to ideal theory in number fields. Found. Comput. Math. 13(5), 729–762 (2013)MathSciNetCrossRef
38.
go back to reference Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons and integral bases. J. Number Theory 147, 549–589 (2015)MathSciNetCrossRef Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons and integral bases. J. Number Theory 147, 549–589 (2015)MathSciNetCrossRef
39.
go back to reference Guàrdia, J., Nart, E., Pauli, S.: Single-factor lifting and factorization of polynomials over local fields. J. Symb. Comput. 47(11), 1318–1346 (2012)MathSciNetCrossRef Guàrdia, J., Nart, E., Pauli, S.: Single-factor lifting and factorization of polynomials over local fields. J. Symb. Comput. 47(11), 1318–1346 (2012)MathSciNetCrossRef
40.
go back to reference Harvey, D., van der Hoeven, J.: Polynomial multiplication over finite fields in time \(O (n \log n)\). J. ACM 69(2), 1–40 (2022)CrossRef Harvey, D., van der Hoeven, J.: Polynomial multiplication over finite fields in time \(O (n \log n)\). J. ACM 69(2), 1–40 (2022)CrossRef
41.
go back to reference Henry, J.P.G., Merle, M.: Complexity of computation of embedded resolution of algebraic curves. In: Davenport, J.H. (ed.), Eurocal ’87. European Conference on Computer Algebra. Leipzig, GDR, June 2–5, (1987). Proceedings, volume 378 of Lect. Notes Comput. Sci., pp. 381–390. Springer Berlin Heidelberg, 1989 Henry, J.P.G., Merle, M.: Complexity of computation of embedded resolution of algebraic curves. In: Davenport, J.H. (ed.), Eurocal ’87. European Conference on Computer Algebra. Leipzig, GDR, June 2–5, (1987). Proceedings, volume 378 of Lect. Notes Comput. Sci., pp. 381–390. Springer Berlin Heidelberg, 1989
42.
go back to reference Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)MathSciNetCrossRef Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)MathSciNetCrossRef
43.
go back to reference van der Hoeven, J.: Automatic asymptotics. PhD thesis, École polytechnique, Palaiseau, France, (1997) van der Hoeven, J.: Automatic asymptotics. PhD thesis, École polytechnique, Palaiseau, France, (1997)
47.
go back to reference van der Hoeven, J.: Computing with D-algebraic power series. Appl. Algebra Eng. Comm. Comput. 30(1), 17–49 (2019)MathSciNetCrossRef van der Hoeven, J.: Computing with D-algebraic power series. Appl. Algebra Eng. Comm. Comput. 30(1), 17–49 (2019)MathSciNetCrossRef
49.
go back to reference van der Hoeven, J.: The Jolly Writer. Scypress, Your Guide to GNU TeXmacs (2020) van der Hoeven, J.: The Jolly Writer. Scypress, Your Guide to GNU TeXmacs (2020)
53.
go back to reference van der Hoeven, J., Lecerf, G.: Univariate polynomial factorization over finite fields with large extension degree. Appl. Algebra Eng. Commun. Comput. 35, 121–149 (2024)MathSciNetCrossRef van der Hoeven, J., Lecerf, G.: Univariate polynomial factorization over finite fields with large extension degree. Appl. Algebra Eng. Commun. Comput. 35, 121–149 (2024)MathSciNetCrossRef
54.
go back to reference Kaltofen, E., Shoup, V.: Fast polynomial factorization over high algebraic extensions of finite fields. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ISSAC ’97, pp. 184–188. New York, NY, USA, ACM (1997) Kaltofen, E., Shoup, V.: Fast polynomial factorization over high algebraic extensions of finite fields. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ISSAC ’97, pp. 184–188. New York, NY, USA, ACM (1997)
55.
go back to reference Kaltofen, E., Shoup, V.: Subquadratic-time factoring of polynomials over finite fields. Math. Comput. 67(223), 1179–1197 (1998)MathSciNetCrossRef Kaltofen, E., Shoup, V.: Subquadratic-time factoring of polynomials over finite fields. Math. Comput. 67(223), 1179–1197 (1998)MathSciNetCrossRef
56.
57.
go back to reference Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. SIAM J. Comput. 40(6), 1767–1802 (2011)MathSciNetCrossRef Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. SIAM J. Comput. 40(6), 1767–1802 (2011)MathSciNetCrossRef
59.
go back to reference Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer-Verlag, New York (2002) Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer-Verlag, New York (2002)
60.
go back to reference Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Comm. Comput. 19(2), 135–160 (2008)MathSciNetCrossRef Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Comm. Comput. 19(2), 135–160 (2008)MathSciNetCrossRef
61.
go back to reference Lecerf, G.: New recombination algorithms for bivariate polynomial factorization based on Hensel lifting. Appl. Algebra Eng. Comm. Comput. 21(2), 151–176 (2010)MathSciNetCrossRef Lecerf, G.: New recombination algorithms for bivariate polynomial factorization based on Hensel lifting. Appl. Algebra Eng. Comm. Comput. 21(2), 151–176 (2010)MathSciNetCrossRef
62.
63.
go back to reference MacLane, S.: A construction for prime ideals as absolute values of an algebraic field. Duke Math. J. 2(3), 492–510 (1936)MathSciNet MacLane, S.: A construction for prime ideals as absolute values of an algebraic field. Duke Math. J. 2(3), 492–510 (1936)MathSciNet
64.
go back to reference Montes, J.: Polígonos de Newton de orden superior y aplicaciones aritméticas. PhD thesis, Universitat de Barcelona, Spain, (1999) Montes, J.: Polígonos de Newton de orden superior y aplicaciones aritméticas. PhD thesis, Universitat de Barcelona, Spain, (1999)
65.
go back to reference Mora, F.: An algorithm to compute the equations of tangent cones. In: Calmet, J. (ed.), Computer Algebra. EUROCAM ’82, European Computer Algebra Conference, Marseilles, France, April 5-7, 1982, volume 144 of Lect. Notes in Computer Sc., pp. 158–165. Springer-Verlag Berlin Heidelberg, (1982) Mora, F.: An algorithm to compute the equations of tangent cones. In:  Calmet, J. (ed.), Computer Algebra. EUROCAM ’82, European Computer Algebra Conference, Marseilles, France, April 5-7, 1982, volume 144 of Lect. Notes in Computer Sc., pp. 158–165. Springer-Verlag Berlin Heidelberg, (1982)
66.
go back to reference Moroz, G.: New data structure for univariate polynomial approximation and applications to root isolation, numerical multipoint evaluation, and other problems. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 1090–1099. Los Alamitos, CA, USA. IEEE (2022) Moroz, G.: New data structure for univariate polynomial approximation and applications to root isolation, numerical multipoint evaluation, and other problems. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 1090–1099. Los Alamitos, CA, USA. IEEE (2022)
67.
go back to reference Moroz, G., Schost, É.: A fast algorithm for computing the truncated resultant. In: Rosenkranz, M. (ed.), Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pp. 341–348. New York, NY, USA, (2016). ACM Moroz, G., Schost, É.: A fast algorithm for computing the truncated resultant. In: Rosenkranz, M. (ed.), Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pp. 341–348. New York, NY, USA, (2016). ACM
68.
go back to reference Nart, E.: Okutsu-Montes representations of prime ideals of one-dimensional integral closures. Publicacions Matemàtiques 55(2), 261–294 (2011)MathSciNetCrossRef Nart, E.: Okutsu-Montes representations of prime ideals of one-dimensional integral closures. Publicacions Matemàtiques 55(2), 261–294 (2011)MathSciNetCrossRef
69.
go back to reference Neiger, V., Rosenkilde, J., Schost, É.: Fast computation of the roots of polynomials over the ring of power series. In: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’17, pp. 349–356. ACM Press, New York, NY, USA, (2017) Neiger, V., Rosenkilde, J., Schost, É.: Fast computation of the roots of polynomials over the ring of power series. In: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’17, pp. 349–356. ACM Press, New York, NY, USA, (2017)
70.
go back to reference Newton, I.: De methodis serierum et Fluxionum. Manuscript, (1671) Newton, I.: De methodis serierum et Fluxionum. Manuscript, (1671)
71.
72.
73.
74.
78.
go back to reference Ostrowski, A.M.: Über die Bedeutung der Theorie der konvexen Polyeder für die formale Algebra. Jahresber. Deutsch. Math.-Verein. 30(2), 98–99 (1921). (Talk given at Der Deutsche Mathematikertag vom 18–24 September 1921 in Jena) Ostrowski, A.M.: Über die Bedeutung der Theorie der konvexen Polyeder für die formale Algebra. Jahresber. Deutsch. Math.-Verein. 30(2), 98–99 (1921). (Talk given at Der Deutsche Mathematikertag vom 18–24 September 1921 in Jena)
79.
go back to reference Ostrowski, A.M.: On multiplication and factorization of polynomials. I. Lexicographic orderings and extreme aggregates of terms. Aequationes Math. 13(3), 201–228 (1975)MathSciNetCrossRef Ostrowski, A.M.: On multiplication and factorization of polynomials. I. Lexicographic orderings and extreme aggregates of terms. Aequationes Math. 13(3), 201–228 (1975)MathSciNetCrossRef
80.
go back to reference Ostrowski, A.M.: On the significance of the theory of convex polyhedra for formal algebra. SIGSAM Bull. 33(1), 5 (1999). (Translated from [78])CrossRef Ostrowski, A.M.: On the significance of the theory of convex polyhedra for formal algebra. SIGSAM Bull. 33(1), 5 (1999). (Translated from [78])CrossRef
81.
go back to reference Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding. J. Symbol. Comput. 33(5), 701–733 (2002)MathSciNetCrossRef Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding. J. Symbol. Comput. 33(5), 701–733 (2002)MathSciNetCrossRef
83.
go back to reference Poteaux, A.: Calcul de développements de Puiseux et application au calcul de groupe de monodromie d’une courbe algébrique plane. PhD thesis, Université de Limoges, France, (2008) Poteaux, A.: Calcul de développements de Puiseux et application au calcul de groupe de monodromie d’une courbe algébrique plane. PhD thesis, Université de Limoges, France, (2008)
84.
go back to reference Poteaux, A., Rybowicz, M.: Improving complexity bounds for the computation of Puiseux series over finite fields. In: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC’15, pp. 299–306. New York, NY, USA. ACM (2015) Poteaux, A., Rybowicz, M.: Improving complexity bounds for the computation of Puiseux series over finite fields. In: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC’15, pp. 299–306. New York, NY, USA. ACM (2015)
85.
go back to reference Poteaux, A., Schost, É.: Modular composition modulo triangular sets and applications. Comput. Complex. 22(3), 463–516 (2013)MathSciNetCrossRef Poteaux, A., Schost, É.: Modular composition modulo triangular sets and applications. Comput. Complex. 22(3), 463–516 (2013)MathSciNetCrossRef
86.
go back to reference Poteaux, A., Weimann, M.: Using approximate roots for irreducibility and equi-singularity issues in \(K [[x]] [y]\). Technical Report, arXiv:1904.00286, (2019) Poteaux, A., Weimann, M.: Using approximate roots for irreducibility and equi-singularity issues in \(K [[x]] [y]\). Technical Report, arXiv:​1904.​00286, (2019)
87.
go back to reference Poteaux, A., Weimann, M.: Computing Puiseux series: a fast divide and conquer algorithm. Ann. Henri Lebesgue 5, 1061–1102 (2021)MathSciNetCrossRef Poteaux, A., Weimann, M.: Computing Puiseux series: a fast divide and conquer algorithm. Ann. Henri Lebesgue 5, 1061–1102 (2021)MathSciNetCrossRef
88.
go back to reference Poteaux, A., Weimann, M.: A quasi-linear irreducibility test in \({\mathbb{K} } [[x]] [y]\). Comput. Complex. 31, 6 (2022)MathSciNetCrossRef Poteaux, A., Weimann, M.: A quasi-linear irreducibility test in \({\mathbb{K} } [[x]] [y]\). Comput. Complex. 31, 6 (2022)MathSciNetCrossRef
89.
go back to reference Poteaux, A., Weimann, M.: Local polynomial factorisation: improving the Montes algorithm. In: Hashemi, A. (ed.), Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ISSAC ’22, pp. 149–157. ACM, New York, NY, USA, (2022) Poteaux, A., Weimann, M.: Local polynomial factorisation: improving the Montes algorithm. In:  Hashemi, A. (ed.), Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ISSAC ’22, pp. 149–157. ACM, New York, NY, USA, (2022)
90.
go back to reference Puiseux, M.V.: Recherches sur les fonctions algébriques. J. Math. Pures et Appliquées 15, 365–480 (1850) Puiseux, M.V.: Recherches sur les fonctions algébriques. J. Math. Pures et Appliquées 15, 365–480 (1850)
91.
92.
go back to reference Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inf. 7, 395–398 (1977)MathSciNetCrossRef Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inf. 7, 395–398 (1977)MathSciNetCrossRef
93.
go back to reference Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Math. Inst. Univ. of Tübingen, Technical Report (1982) Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Math. Inst. Univ. of Tübingen, Technical Report (1982)
94.
go back to reference Shoup, V.: New algorithms for finding irreducible polynomials over finite fields. Math. Comp. 54(189), 435–447 (1990)MathSciNetCrossRef Shoup, V.: New algorithms for finding irreducible polynomials over finite fields. Math. Comp. 54(189), 435–447 (1990)MathSciNetCrossRef
95.
go back to reference Smith, S.: On the higher singularities of plane curves. Prod. Lond. Math. Soc. 6, 153–182 (1875)MathSciNet Smith, S.: On the higher singularities of plane curves. Prod. Lond. Math. Soc. 6, 153–182 (1875)MathSciNet
96.
go back to reference von Tschirnhaus, E.W.: Nova methodus auferendi omnes terminos intermedios ex data æquatione. Acta Eriditorium, 1683, 204–207 von Tschirnhaus, E.W.: Nova methodus auferendi omnes terminos intermedios ex data æquatione. Acta Eriditorium, 1683, 204–207
97.
go back to reference van der Waerden, B.L. Algebra. Springer, 7th edition: Based in part on lectures by E. Artin and E, Noether (1991) van der Waerden, B.L. Algebra. Springer, 7th edition: Based in part on lectures by E. Artin and E, Noether (1991)
98.
go back to reference Walker, R.J.: Algebraic Curves, volume 13 of Princeton mathematical series. Princeton University Press, (1950) Walker, R.J.: Algebraic Curves, volume 13 of Princeton mathematical series. Princeton University Press, (1950)
99.
go back to reference Walsh, P.: A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function. Math. Comp. 69(231), 1167–1182 (2000)MathSciNetCrossRef Walsh, P.: A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function. Math. Comp. 69(231), 1167–1182 (2000)MathSciNetCrossRef
100.
101.
go back to reference Watt, S.M.: A fixed point method for power series computation. In: Gianni, P. (ed.), Symbolic and Algebraic Computation. International Symposium ISSAC’ 88, Rome, Italy, July 4-8, 1988. Proceedings, volume 358 of Lect. Notes in Computer Sc., pp. 206–217. Springer-Verlag, (1989) Watt, S.M.: A fixed point method for power series computation. In: Gianni, P. (ed.), Symbolic and Algebraic Computation. International Symposium ISSAC’ 88, Rome, Italy, July 4-8, 1988. Proceedings, volume 358 of Lect. Notes in Computer Sc., pp. 206–217. Springer-Verlag, (1989)
102.
go back to reference Zariski, O.: Le problème des modules pour les branches planes. Hermann, Paris (1986) Zariski, O.: Le problème des modules pour les branches planes. Hermann, Paris (1986)
Metadata
Title
Plane curve germs and contact factorization
Authors
Joris van der Hoeven
Grégoire Lecerf
Publication date
30-11-2024
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00669-z

Premium Partner