Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

Plant Disease Classification and Segmentation Using a Hybrid Computer-Aided Model Using GAN and Transfer Learning

Authors : Khaoula Taji, Yassine Taleb Ahmad, Fadoua Ghanimi

Published in: Innovations in Smart Cities Applications Volume 7

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the critical issue of plant disease detection, which significantly impacts agricultural productivity. It introduces a hybrid model that combines Generative Adversarial Networks (GAN) and transfer learning to enhance the classification and segmentation of plant diseases. By leveraging deep learning architectures such as DenseNet, ResNet9, and EfficientNetB1, the model demonstrates superior performance compared to existing methods. The study also highlights the importance of data augmentation and noise reduction techniques to improve model accuracy. Additionally, the chapter explores the application of instance and semantic segmentation methods, such as Mask-RCNN and UNet, to accurately localize and segment diseased areas in plant images. The proposed hybrid model not only achieves high accuracy in disease classification but also effectively identifies and segments affected regions, making it a valuable tool for farmers and researchers. The chapter concludes by discussing future research directions, including the integration of advanced computer vision techniques and real-time disease monitoring systems to further enhance agricultural productivity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abbas, A., Jain, S., Gour, M., Vankudothu, S.: Tomato plant disease detection using transfer learning with C-GAN synthetic images. Comput. Electron. Agric. 187, 106279 (2021)CrossRef Abbas, A., Jain, S., Gour, M., Vankudothu, S.: Tomato plant disease detection using transfer learning with C-GAN synthetic images. Comput. Electron. Agric. 187, 106279 (2021)CrossRef
2.
go back to reference Agarwal, M., Kotecha, A., Deolalikar, A., Kalia, R., Yadav, R.K., Thomas, A.: Deep learning approaches for plant disease detection: a comparative review. In: 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–6. IEEE (2023) Agarwal, M., Kotecha, A., Deolalikar, A., Kalia, R., Yadav, R.K., Thomas, A.: Deep learning approaches for plant disease detection: a comparative review. In: 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–6. IEEE (2023)
3.
go back to reference Aggarwal, A., Mittal, M., Battineni, G.: Generative adversarial network: an overview of theory and applications. Int. J. Inf. Manag. Data Insights 1(1), 100004 (2021) Aggarwal, A., Mittal, M., Battineni, G.: Generative adversarial network: an overview of theory and applications. Int. J. Inf. Manag. Data Insights 1(1), 100004 (2021)
4.
go back to reference Ahmad, A., Saraswat, D., El Gamal, A.: A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agric. Technol. 3, 100083 (2023)CrossRef Ahmad, A., Saraswat, D., El Gamal, A.: A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agric. Technol. 3, 100083 (2023)CrossRef
5.
go back to reference Azim, M.A., Islam, M.K., Rahman, M.M., Jahan, F.: An effective feature extraction method for rice leaf disease classification. Telkomnika (Telecommun. Comput. Electron. Control) 19(2), 463–470 (2021)CrossRef Azim, M.A., Islam, M.K., Rahman, M.M., Jahan, F.: An effective feature extraction method for rice leaf disease classification. Telkomnika (Telecommun. Comput. Electron. Control) 19(2), 463–470 (2021)CrossRef
6.
go back to reference Barkau, R.L.: UNET, One-Dimensional Unsteady Flow Through a Full Network of Open Channels: User’s Manual. US Army COE, Hydrologic Engineering Center (1996) Barkau, R.L.: UNET, One-Dimensional Unsteady Flow Through a Full Network of Open Channels: User’s Manual. US Army COE, Hydrologic Engineering Center (1996)
7.
go back to reference Bharati, P., Pramanik, A.: Deep learning techniques-R-CNN to mask R-CNN: a survey. Comput. Intell. Pattern Recogn. Proc. CIPR 2019, 657–668 (2020) Bharati, P., Pramanik, A.: Deep learning techniques-R-CNN to mask R-CNN: a survey. Comput. Intell. Pattern Recogn. Proc. CIPR 2019, 657–668 (2020)
8.
go back to reference Bhatt, P., Sarangi, S., Pappula, S.: Comparison of CNN models for application in crop health assessment with participatory sensing. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC), pp. 1–7. IEEE (2017) Bhatt, P., Sarangi, S., Pappula, S.: Comparison of CNN models for application in crop health assessment with participatory sensing. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC), pp. 1–7. IEEE (2017)
9.
go back to reference Chand, S., Hari, R.: Plant disease identification and suggestion of remedial measures using machine learning. In: 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), pp. 895–901. IEEE (2022) Chand, S., Hari, R.: Plant disease identification and suggestion of remedial measures using machine learning. In: 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), pp. 895–901. IEEE (2022)
10.
go back to reference Daniel, J., Rose, J., Vinnarasi, F., Rajinikanth, V.: VGG-UNet/VGG-SegNet supported automatic segmentation of endoplasmic reticulum network in fluorescence microscopy images. Scanning 2022, 7733860 (2022)CrossRef Daniel, J., Rose, J., Vinnarasi, F., Rajinikanth, V.: VGG-UNet/VGG-SegNet supported automatic segmentation of endoplasmic reticulum network in fluorescence microscopy images. Scanning 2022, 7733860 (2022)CrossRef
11.
go back to reference Hughes, D., Salathé, M., et al.: An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060 (2015) Hughes, D., Salathé, M., et al.: An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:​1511.​08060 (2015)
12.
go back to reference Kamal, K., Yin, Z., Wu, M., Wu, Z.: Depthwise separable convolution architectures for plant disease classification. Comput. Electron. Agric. 165, 104948 (2019)CrossRef Kamal, K., Yin, Z., Wu, M., Wu, Z.: Depthwise separable convolution architectures for plant disease classification. Comput. Electron. Agric. 165, 104948 (2019)CrossRef
13.
go back to reference Kantale, P., Thakare, S.: A review on pomegranate disease classification using machine learning and image segmentation techniques. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 455–460. IEEE (2020) Kantale, P., Thakare, S.: A review on pomegranate disease classification using machine learning and image segmentation techniques. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 455–460. IEEE (2020)
14.
go back to reference Kc, K., Yin, Z., Li, D., Wu, Z.: Impacts of background removal on convolutional neural networks for plant disease classification in-situ. Agriculture 11(9), 827 (2021)CrossRef Kc, K., Yin, Z., Li, D., Wu, Z.: Impacts of background removal on convolutional neural networks for plant disease classification in-situ. Agriculture 11(9), 827 (2021)CrossRef
15.
go back to reference Khan, K., Khan, R.U., Albattah, W., Qamar, A.M.: End-to-end semantic leaf segmentation framework for plants disease classification. Complexity 2022, 1168700 (2022)CrossRef Khan, K., Khan, R.U., Albattah, W., Qamar, A.M.: End-to-end semantic leaf segmentation framework for plants disease classification. Complexity 2022, 1168700 (2022)CrossRef
16.
go back to reference Kumar, R., Chug, A., Singh, A.P., Singh, D.: A systematic analysis of machine learning and deep learning based approaches for plant leaf disease classification: a review. J. Sens. 2022, 1–13 (2022) Kumar, R., Chug, A., Singh, A.P., Singh, D.: A systematic analysis of machine learning and deep learning based approaches for plant leaf disease classification: a review. J. Sens. 2022, 1–13 (2022)
17.
go back to reference Lu, J., Tan, L., Jiang, H.: Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 11(8), 707 (2021)CrossRef Lu, J., Tan, L., Jiang, H.: Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 11(8), 707 (2021)CrossRef
18.
go back to reference Nazarov, P.A., Baleev, D.N., Ivanova, M.I., Sokolova, L.M., Karakozova, M.V.: Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae 12(3), 46 (2020)CrossRef Nazarov, P.A., Baleev, D.N., Ivanova, M.I., Sokolova, L.M., Karakozova, M.V.: Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae 12(3), 46 (2020)CrossRef
19.
go back to reference Pokkuluri, K.S., Nedunuri, S.U.D., Devi, U.: Crop disease prediction with convolution neural network (CNN) augmented with cellular automata. Int. Arab J. Inf. Technol. 19(5), 765–773 (2022) Pokkuluri, K.S., Nedunuri, S.U.D., Devi, U.: Crop disease prediction with convolution neural network (CNN) augmented with cellular automata. Int. Arab J. Inf. Technol. 19(5), 765–773 (2022)
20.
go back to reference Sarvamangala, D., Kulkarni, R.V.: Convolutional neural networks in medical image understanding: a survey. Evol. Intel. 15(1), 1–22 (2022)CrossRef Sarvamangala, D., Kulkarni, R.V.: Convolutional neural networks in medical image understanding: a survey. Evol. Intel. 15(1), 1–22 (2022)CrossRef
21.
go back to reference Sembiring, A., Away, Y., Arnia, F., Muharar, R.: Development of concise convolutional neural network for tomato plant disease classification based on leaf images. J. Phys. Conf. Ser. 1845, 012009 (2021). IOP Publishing Sembiring, A., Away, Y., Arnia, F., Muharar, R.: Development of concise convolutional neural network for tomato plant disease classification based on leaf images. J. Phys. Conf. Ser. 1845, 012009 (2021). IOP Publishing
22.
go back to reference Sethy, P.K., Barpanda, N.K., Rath, A.K., Behera, S.K.: Image processing techniques for diagnosing rice plant disease: a survey. Procedia Comput. Sci. 167, 516–530 (2020)CrossRef Sethy, P.K., Barpanda, N.K., Rath, A.K., Behera, S.K.: Image processing techniques for diagnosing rice plant disease: a survey. Procedia Comput. Sci. 167, 516–530 (2020)CrossRef
23.
go back to reference Sharma, P., Berwal, Y.P.S., Ghai, W.: Performance analysis of deep learning CNN models for disease detection in plants using image segmentation. Inf. Process. Agric. 7(4), 566–574 (2020) Sharma, P., Berwal, Y.P.S., Ghai, W.: Performance analysis of deep learning CNN models for disease detection in plants using image segmentation. Inf. Process. Agric. 7(4), 566–574 (2020)
24.
go back to reference Shoaib, M., et al.: Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Plant Sci. 13, 1031748 (2022)CrossRef Shoaib, M., et al.: Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Plant Sci. 13, 1031748 (2022)CrossRef
25.
go back to reference Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S., Batra, N.: PlantDoc: a dataset for visual plant disease detection. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 249–253 (2020) Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S., Batra, N.: PlantDoc: a dataset for visual plant disease detection. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 249–253 (2020)
26.
go back to reference Sood, M., Singh, P.K., et al.: Hybrid system for detection and classification of plant disease using qualitative texture features analysis. Procedia Comput. Sci. 167, 1056–1065 (2020)CrossRef Sood, M., Singh, P.K., et al.: Hybrid system for detection and classification of plant disease using qualitative texture features analysis. Procedia Comput. Sci. 167, 1056–1065 (2020)CrossRef
27.
go back to reference Swaminathan, A., Varun, C., Kalaivani, S., et al.: Multiple plant leaf disease classification using densenet-121 architecture. Int. J. Electr. Eng. Technol 12, 38–57 (2021) Swaminathan, A., Varun, C., Kalaivani, S., et al.: Multiple plant leaf disease classification using densenet-121 architecture. Int. J. Electr. Eng. Technol 12, 38–57 (2021)
28.
go back to reference Xian, T.S., Ngadiran, R.: Plant diseases classification using machine learning. J. Phys. Conf. Ser. 1962, 012024 (2021). IOP Publishing Xian, T.S., Ngadiran, R.: Plant diseases classification using machine learning. J. Phys. Conf. Ser. 1962, 012024 (2021). IOP Publishing
Metadata
Title
Plant Disease Classification and Segmentation Using a Hybrid Computer-Aided Model Using GAN and Transfer Learning
Authors
Khaoula Taji
Yassine Taleb Ahmad
Fadoua Ghanimi
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-54376-0_1