Skip to main content
Top
Published in: Metallurgist 1-2/2017

20-05-2017

Plasma-ARC Heating of Periclase-Carbonaceous Refractory

Authors: M. V. Krasnyanskii, Ya. L. Kats, A. S. Tyuftyaev, M. Kh. Gadzhiev, M. A. Sargsyan, D. I. Yusupov

Published in: Metallurgist | Issue 1-2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plasma-arc heating of periclase-carbonaceous refractory was experimentally tested. A high heating rate of 600°C/h was achieved. The experimental results were used to correct the thermal characteristics of raw refractory and to determine the energy characteristics of the arc discharge. Raw periclase-carbonaceous refractory has high heat conductivity (25 W/(m·K)) and low emissivity (0.3). The radiated power (130 kW) of the discharge is calculated from spectral measurements of an argon plasma arc with a current of 1000 A and an arc voltage of 150 V. The obtained data are used to specify the parameters of the CFD-model of plasma-arc heating of periclase-carbonaceous refractory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Gupta and S. Chandra, “Temperature prediction model for controlling casting superheat temperature,” ISIJ Int., 44, No. 9, 1517–1526 (2004).CrossRef N. Gupta and S. Chandra, “Temperature prediction model for controlling casting superheat temperature,” ISIJ Int., 44, No. 9, 1517–1526 (2004).CrossRef
2.
go back to reference B. Glasser, M. Gornerup, and D. Sichen, “Thermal modeling of the ladle preheating process,” Steel Res. Int., 82, No. 12, 1425–1434 (2011).CrossRef B. Glasser, M. Gornerup, and D. Sichen, “Thermal modeling of the ladle preheating process,” Steel Res. Int., 82, No. 12, 1425–1434 (2011).CrossRef
3.
go back to reference I. M. Bershitskii and A. V. Tararyshkin, “Energy-saving and environmentally friendly installations for electric drying and heating of ladle lining,” Stal, No. 2, 24–25 (2010). I. M. Bershitskii and A. V. Tararyshkin, “Energy-saving and environmentally friendly installations for electric drying and heating of ladle lining,” Stal, No. 2, 24–25 (2010).
4.
go back to reference M. V. Krasnyansky, Ya. L. Kats, and I. M. Bershitsky, “Efficiency of electrically heating the lining of steel-pouring ladles,” Metallurg, No. 5, 48–53 (2012). M. V. Krasnyansky, Ya. L. Kats, and I. M. Bershitsky, “Efficiency of electrically heating the lining of steel-pouring ladles,” Metallurg, No. 5, 48–53 (2012).
5.
go back to reference M. V. Krasnyanskii, Ya. L. Kats, and I. M. Bershitskii, “Optimization of ladle metallurgy temperature by mathematical modeling,” in: Proc. 12th Int. Congr. of Steelmakers, Moscow (2013), pp. 161–164. M. V. Krasnyanskii, Ya. L. Kats, and I. M. Bershitskii, “Optimization of ladle metallurgy temperature by mathematical modeling,” in: Proc. 12th Int. Congr. of Steelmakers, Moscow (2013), pp. 161–164.
6.
go back to reference Ya. L. Kats and M. V. Krasnyanskii, “Energy- and recourse-saving process of electric drying and heating of carboniferous lining of ladles,” Chern. Metally, No. 11, 20–25 (2015). Ya. L. Kats and M. V. Krasnyanskii, “Energy- and recourse-saving process of electric drying and heating of carboniferous lining of ladles,” Chern. Metally, No. 11, 20–25 (2015).
7.
go back to reference G. A. Filippov, A. S. Tyuftyaev, M. Kh. Gadzhiev, and D. I. Yusupov, “Effect of stabilizing steel temperature in a continuous-caster tundish by the plasma method on the uniformity of the mechanical properties of plates after rolling,” Metallurg, No. 3, 49–53 (2016). G. A. Filippov, A. S. Tyuftyaev, M. Kh. Gadzhiev, and D. I. Yusupov, “Effect of stabilizing steel temperature in a continuous-caster tundish by the plasma method on the uniformity of the mechanical properties of plates after rolling,” Metallurg, No. 3, 49–53 (2016).
8.
go back to reference N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data, 31, No. 3, 819–927 (2002).CrossRef N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data, 31, No. 3, 819–927 (2002).CrossRef
9.
go back to reference W. Lochte-Holtgreven (ed.), Plasma Diagnostics, North-Holland, Amsterdam, The Netherlands (1968). W. Lochte-Holtgreven (ed.), Plasma Diagnostics, North-Holland, Amsterdam, The Netherlands (1968).
10.
go back to reference I. A. Kotel’nikov and G. V. Stupakov, Lectures on Plasma Physics, NGU, Novosibirsk (1996). I. A. Kotel’nikov and G. V. Stupakov, Lectures on Plasma Physics, NGU, Novosibirsk (1996).
11.
go back to reference J. Allenstein et al., Refractory Materials: Design, Properties, and Testing: Handbook [Russian translation], G. Routschka and H. Wuthnow (eds.), Intermet Engineering, Moscow (2010). J. Allenstein et al., Refractory Materials: Design, Properties, and Testing: Handbook [Russian translation], G. Routschka and H. Wuthnow (eds.), Intermet Engineering, Moscow (2010).
12.
go back to reference TT 72664728-034-2012, Periclase-Carbonaceous Refractory Products Based on Fused Periclase Powders and Compound Matrix, Magnezit Group, Moscow (2012). TT 72664728-034-2012, Periclase-Carbonaceous Refractory Products Based on Fused Periclase Powders and Compound Matrix, Magnezit Group, Moscow (2012).
13.
go back to reference M. V. Krasnyanskii and Ya. L. Kats, “Determination of the integral emissivity of a periclase-carbon lining,” Metallurgist, 58, No. 5–6, 388–391 (2014). M. V. Krasnyanskii and Ya. L. Kats, “Determination of the integral emissivity of a periclase-carbon lining,” Metallurgist, 58, No. 5–6, 388–391 (2014).
14.
go back to reference L. B. Khoroshavin, V. A. Perepelitsyn, and V. A. Kononov, Handbook of M agnesia Refractories, Intermet Engineering, Moscow (2001). L. B. Khoroshavin, V. A. Perepelitsyn, and V. A. Kononov, Handbook of M agnesia Refractories, Intermet Engineering, Moscow (2001).
Metadata
Title
Plasma-ARC Heating of Periclase-Carbonaceous Refractory
Authors
M. V. Krasnyanskii
Ya. L. Kats
A. S. Tyuftyaev
M. Kh. Gadzhiev
M. A. Sargsyan
D. I. Yusupov
Publication date
20-05-2017
Publisher
Springer US
Published in
Metallurgist / Issue 1-2/2017
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-017-0449-1

Other articles of this Issue 1-2/2017

Metallurgist 1-2/2017 Go to the issue

Premium Partners