Skip to main content
Top

2022 | OriginalPaper | Chapter

Plasma Processing of Carbon Dioxide

Authors : Kali Charan Sabat, Archana Singh, Satyabrata Das

Published in: Advancement in Materials, Manufacturing and Energy Engineering, Vol. I

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The world is facing huge environmental problems due to the increasing emission of carbon dioxide (CO2) from industries and various resources. Therefore, immediate attention is required for the utilization of CO2. Fortunately, CO2 can be converted to value-added products and fuels by various processes. Out of these processes, plasma has the highest potential, ascribed to the high bond stability of CO2. Out of the existing plasmas, non-thermal plasma is a promising area to convert CO2 to various chemical products and fuels, at temperatures as low as room temperature and pressures around/lower than atmospheric pressure. Therefore, there is an immediate need to pay attention to the recent progress of various non-thermal plasmas. The review brings both researchers’ and industries’ attention to the critical non-thermal plasmas like microwave, dielectric barrier discharge, and gliding arc discharge, with particular attention to microwave plasma. These plasmas have a high potential for producing value-added products having high market values. There is an immediate need from researchers and industries to carry out further studies in this emerging area for sustainable development with due attention to the environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sabat KC, Murphy AB (2017) Hydrogen plasma processing of iron ore. Metall Mater Trans B Process Metall Mater Process Sci 48:1561–1594CrossRef Sabat KC, Murphy AB (2017) Hydrogen plasma processing of iron ore. Metall Mater Trans B Process Metall Mater Process Sci 48:1561–1594CrossRef
2.
go back to reference Sabat KC, Rajput P, Paramguru RK, Bhoi B, Mishra BK (2014) Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Process 34:1–23CrossRef Sabat KC, Rajput P, Paramguru RK, Bhoi B, Mishra BK (2014) Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Process 34:1–23CrossRef
3.
go back to reference Sabat KC, Paramguru RK, Mishra BK (2018) Formation of copper-nickel alloy from their oxide mixtures through reduction by low-temperature hydrogen plasma. Plasma Chem Plasma Process 38:621–635CrossRef Sabat KC, Paramguru RK, Mishra BK (2018) Formation of copper-nickel alloy from their oxide mixtures through reduction by low-temperature hydrogen plasma. Plasma Chem Plasma Process 38:621–635CrossRef
4.
go back to reference Sabat KC (2019) Formation of CuCo alloy from their oxide mixtures through reduction by low-temperature hydrogen plasma. Plasma Chem Plasma Process 39:1071–1086CrossRef Sabat KC (2019) Formation of CuCo alloy from their oxide mixtures through reduction by low-temperature hydrogen plasma. Plasma Chem Plasma Process 39:1071–1086CrossRef
5.
go back to reference Sabat KC, Paramguru RK, Mishra BK (2017) Reduction of oxide mixtures of (Fe2O3 + CuO) and (Fe2O3 + Co3O4) by low-temperature hydrogen plasma. Plasma Chem Plasma Process 37:979–995CrossRef Sabat KC, Paramguru RK, Mishra BK (2017) Reduction of oxide mixtures of (Fe2O3 + CuO) and (Fe2O3 + Co3O4) by low-temperature hydrogen plasma. Plasma Chem Plasma Process 37:979–995CrossRef
6.
7.
go back to reference Fridman AA, Kennedy LA (2004) Plasma physics and engineering Fridman AA, Kennedy LA (2004) Plasma physics and engineering
8.
go back to reference Rajput P, Sabat KC, Paramguru RK, Bhoi B, Mishra BK (2014) Direct reduction of iron in low temperature hydrogen plasma. Ironmak Steelmak 41:721–731CrossRef Rajput P, Sabat KC, Paramguru RK, Bhoi B, Mishra BK (2014) Direct reduction of iron in low temperature hydrogen plasma. Ironmak Steelmak 41:721–731CrossRef
9.
go back to reference Chen G, Godfroid T, Britun N, Georgieva V, Delplancke-Ogletree MP, Snyders R (2017) Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Appl Catal B Environ 214:114–125CrossRef Chen G, Godfroid T, Britun N, Georgieva V, Delplancke-Ogletree MP, Snyders R (2017) Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Appl Catal B Environ 214:114–125CrossRef
10.
go back to reference Chen G, Britun N, Godfroid T, Georgieva V, Snyders R, Delplancke-Ogletree M-P (2017) An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. J Phys D Appl Phys 50:84001CrossRef Chen G, Britun N, Godfroid T, Georgieva V, Snyders R, Delplancke-Ogletree M-P (2017) An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. J Phys D Appl Phys 50:84001CrossRef
11.
go back to reference Huang Q, Zhang D, Wang D, Liu K, Kleyn AW (2017) Carbon dioxide dissociation in non-thermal radiofrequency and microwave plasma. J Phys D Appl Phys 50:294001 Huang Q, Zhang D, Wang D, Liu K, Kleyn AW (2017) Carbon dioxide dissociation in non-thermal radiofrequency and microwave plasma. J Phys D Appl Phys 50:294001
12.
go back to reference Mitsingas CM, Rajasegar R, Hammack S, Do H, Lee T (2016) High energy efficiency plasma conversion of CO2 at atmospheric pressure using a direct-coupled microwave plasma system. IEEE Trans Plasma Sci 44:651–656CrossRef Mitsingas CM, Rajasegar R, Hammack S, Do H, Lee T (2016) High energy efficiency plasma conversion of CO2 at atmospheric pressure using a direct-coupled microwave plasma system. IEEE Trans Plasma Sci 44:651–656CrossRef
13.
go back to reference Berthelot A, Bogaerts A (2017) Modeling of CO2 splitting in a microwave plasma: how to improve the conversion and energy efficiency. J Phys Chem C 121:8236–8251CrossRef Berthelot A, Bogaerts A (2017) Modeling of CO2 splitting in a microwave plasma: how to improve the conversion and energy efficiency. J Phys Chem C 121:8236–8251CrossRef
14.
go back to reference Silva T, Britun N, Godfroid T, Snyders R (2014) Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci Technol 23 Silva T, Britun N, Godfroid T, Snyders R (2014) Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci Technol 23
15.
go back to reference Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Groen PW, Kopecki J, Leins M, van Rooij G, Schulz A, Walker M, van de Sanden R (2017) Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Process Polym 14 Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Groen PW, Kopecki J, Leins M, van Rooij G, Schulz A, Walker M, van de Sanden R (2017) Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Process Polym 14
16.
go back to reference den Harder N, van den Bekerom DCM, Al RS, Graswinckel MF, Palomares JM, Peeters FJJ, Ponduri S, Minea T, Bongers WA, van de Sanden MCM (2017) Homogeneous CO2 conversion by microwave plasma: wave propagation and diagnostics. Plasma Process Polym 14:1600120CrossRef den Harder N, van den Bekerom DCM, Al RS, Graswinckel MF, Palomares JM, Peeters FJJ, Ponduri S, Minea T, Bongers WA, van de Sanden MCM (2017) Homogeneous CO2 conversion by microwave plasma: wave propagation and diagnostics. Plasma Process Polym 14:1600120CrossRef
17.
go back to reference van den Bekerom DCM, Linares JMP, Verreycken T, Van Veldhuizen EM, Nijdam S, Berden G, Bongers WA, Van De Sanden MCM, van Rooij GJ (2019) The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering. Plasma Sources Sci Technol 28:55015CrossRef van den Bekerom DCM, Linares JMP, Verreycken T, Van Veldhuizen EM, Nijdam S, Berden G, Bongers WA, Van De Sanden MCM, van Rooij GJ (2019) The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering. Plasma Sources Sci Technol 28:55015CrossRef
18.
go back to reference Zhang J-Q, Yang Y-J, Zhang J-S, Liu Q (2002) Study on the conversion of CH4 and CO2 using a pulsed microwave plasma under atmospheric pressure. ACTA Chim Sin Ed 60:1973–1980 Zhang J-Q, Yang Y-J, Zhang J-S, Liu Q (2002) Study on the conversion of CH4 and CO2 using a pulsed microwave plasma under atmospheric pressure. ACTA Chim Sin Ed 60:1973–1980
19.
go back to reference Ihara T, Kiboku M, Iriyama Y (1994) Plasma reduction of CO2 with H2O for the formation of organic compounds. Bull Chem Soc Jpn 67:312–314CrossRef Ihara T, Kiboku M, Iriyama Y (1994) Plasma reduction of CO2 with H2O for the formation of organic compounds. Bull Chem Soc Jpn 67:312–314CrossRef
20.
go back to reference Ihara T, Ouro T, Ochiai T, Kiboku M, Iriyama Y (1996) Formation of methanol by microwave-plasma reduction of CO2 with H2O. Bull Chem Soc Jpn 69:241–244CrossRef Ihara T, Ouro T, Ochiai T, Kiboku M, Iriyama Y (1996) Formation of methanol by microwave-plasma reduction of CO2 with H2O. Bull Chem Soc Jpn 69:241–244CrossRef
21.
go back to reference Chen G, Silva T, Georgieva V, Godfroid T, Britun N, Snyders R, Delplancke-Ogletree MP (2015) Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. Int J Hydrogen Energy 40:3789–3796CrossRef Chen G, Silva T, Georgieva V, Godfroid T, Britun N, Snyders R, Delplancke-Ogletree MP (2015) Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. Int J Hydrogen Energy 40:3789–3796CrossRef
22.
go back to reference Hayashi N, Yamakawa T, Baba S (2006) Effect of additive gases on synthesis of organic compounds from carbon dioxide using non-thermal plasma produced by atmospheric surface discharges. Vacuum 80:1299–1304CrossRef Hayashi N, Yamakawa T, Baba S (2006) Effect of additive gases on synthesis of organic compounds from carbon dioxide using non-thermal plasma produced by atmospheric surface discharges. Vacuum 80:1299–1304CrossRef
23.
go back to reference de la Fuente JF, Moreno SH, Stankiewicz AI, Stefanidis GD (2016) A new methodology for the reduction of vibrational kinetics in non-equilibrium microwave plasma: application to CO2 dissociation. React Chem Eng 1:540–554CrossRef de la Fuente JF, Moreno SH, Stankiewicz AI, Stefanidis GD (2016) A new methodology for the reduction of vibrational kinetics in non-equilibrium microwave plasma: application to CO2 dissociation. React Chem Eng 1:540–554CrossRef
24.
go back to reference Sun SR, Wang HX, Mei DH, Tu X, Bogaerts A (2017) CO2 conversion in a gliding arc plasma: performance improvement based on chemical reaction modeling. J CO2 Util 17:220–34 Sun SR, Wang HX, Mei DH, Tu X, Bogaerts A (2017) CO2 conversion in a gliding arc plasma: performance improvement based on chemical reaction modeling. J CO2 Util 17:220–34
25.
go back to reference Devid E, Zhang D, Wang D, Ronda-Lloret M, Huang Q, Rothenberg G, Shiju NR, Kleyn AW (2020) Dry reforming of methane under mild conditions using radio frequency Plasma. Energy Technol 8 Devid E, Zhang D, Wang D, Ronda-Lloret M, Huang Q, Rothenberg G, Shiju NR, Kleyn AW (2020) Dry reforming of methane under mild conditions using radio frequency Plasma. Energy Technol 8
26.
go back to reference Snoeckx R, Ozkan A, Reniers F, Bogaerts A (2017) The quest for value-added products from carbon dioxide and water in a dielectric barrier discharge: a chemical kinetics study. Chemsuschem 10:409–424CrossRef Snoeckx R, Ozkan A, Reniers F, Bogaerts A (2017) The quest for value-added products from carbon dioxide and water in a dielectric barrier discharge: a chemical kinetics study. Chemsuschem 10:409–424CrossRef
27.
go back to reference Snoeckx R, Bogaerts A (2017) Plasma technology-a novel solution for CO2 conversion? Chem Soc Rev 46:5805–5863CrossRef Snoeckx R, Bogaerts A (2017) Plasma technology-a novel solution for CO2 conversion? Chem Soc Rev 46:5805–5863CrossRef
28.
go back to reference De Bie C, Van Dijk J, Bogaerts A (2016) CO2 hydrogenation in a dielectric barrier discharge plasma revealed. J Phys Chem C 120:25210–25224CrossRef De Bie C, Van Dijk J, Bogaerts A (2016) CO2 hydrogenation in a dielectric barrier discharge plasma revealed. J Phys Chem C 120:25210–25224CrossRef
29.
go back to reference Chen G, Britun N, Godfroid T, Georgieva V, Snyders R, Delplancke-Ogletree MP (2017) An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. J Phys D Appl Phys 50:084001 Chen G, Britun N, Godfroid T, Georgieva V, Snyders R, Delplancke-Ogletree MP (2017) An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. J Phys D Appl Phys 50:084001
30.
go back to reference Li L, Zhang H, Li X, Kong X, Xu R, Tay K, Tu X (2019) Plasma-assisted CO2 conversion in a gliding arc discharge: Improving performance by optimizing the reactor design. J CO2 Util 29:296–303 Li L, Zhang H, Li X, Kong X, Xu R, Tay K, Tu X (2019) Plasma-assisted CO2 conversion in a gliding arc discharge: Improving performance by optimizing the reactor design. J CO2 Util 29:296–303
31.
go back to reference Li L, Zhang H, Li X, Huang J, Kong X, Xu R, Tu X (2020) Magnetically enhanced gliding arc discharge for CO2 activation. J CO2 Util 35:28–37 Li L, Zhang H, Li X, Huang J, Kong X, Xu R, Tu X (2020) Magnetically enhanced gliding arc discharge for CO2 activation. J CO2 Util 35:28–37
32.
go back to reference Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39:9658–9669CrossRef Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39:9658–9669CrossRef
33.
go back to reference Mei D, Zhu X, He Y-L, Yan JD, Tu X (2014) Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Sci Technol 24:15011CrossRef Mei D, Zhu X, He Y-L, Yan JD, Tu X (2014) Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Sci Technol 24:15011CrossRef
34.
go back to reference Indarto A, Choi JW, Lee H, Song HK (2006) Effect of additive gases on methane conversion using gliding arc discharge. Energy 31:2986–2995CrossRef Indarto A, Choi JW, Lee H, Song HK (2006) Effect of additive gases on methane conversion using gliding arc discharge. Energy 31:2986–2995CrossRef
35.
go back to reference Nunnally T, Gutsol K, Rabinovich A, Fridman A, Gutsol A, Kemoun A (2011) Dissociation of CO2 in a low current gliding arc plasmatron. J Phys D Appl Phys 44(27):274009 Nunnally T, Gutsol K, Rabinovich A, Fridman A, Gutsol A, Kemoun A (2011) Dissociation of CO2 in a low current gliding arc plasmatron. J Phys D Appl Phys 44(27):274009
Metadata
Title
Plasma Processing of Carbon Dioxide
Authors
Kali Charan Sabat
Archana Singh
Satyabrata Das
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5371-1_41

Premium Partners