Skip to main content
Top
Published in: Journal of Materials Science 5/2019

09-11-2018 | Electronic materials

Plasma-produced ZnO nanorod arrays as an antireflective layer in c-Si solar cells

Authors: Feifei Huang, Bin Guo, Shuai Li, Junchi Fu, Ling Zhang, Guanhua Lin, Qinru Yang, Qijin Cheng

Published in: Journal of Materials Science | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we develop a simple customized radio-frequency plasma-enhanced horizontal tube furnace deposition system to directly grow high-quality ZnO nanorod arrays on zinc films and investigate their application as an antireflective layer in n+pp+ monocrystalline silicon (c-Si) solar cells. Field emission scanning electron microscope, X-ray diffractometer, and transmission electron microscope studies reveal that ZnO nanorod arrays feature a perfect crystalline wurtzite structure and grow preferentially along [0001] direction. The antireflective performance of ZnO nanorod arrays is confirmed by Fresnel coefficient matrix method and MATLAB software calculation. Furthermore, PC1D simulation demonstrates that the photovoltaic property for c-Si solar cells of the pyramid-textured front surface using ZnO nanorod arrays as an antireflective layer is much better than that for the other three types of c-Si solar cells (i.e., c-Si solar cells of the pyramid-textured front surface without using any antireflective layer, c-Si solar cells of the planar front surface using ZnO nanorod arrays as an antireflective layer, as well as c-Si solar cells of the planar front surface without using any antireflective layer). In particular, the photovoltaic conversion efficiency of 20.23% has been achieved for c-Si solar cells of the pyramid-textured front surface using ZnO nanorod arrays as an antireflective layer. This work is highly relevant to the development of an advanced process for the realization of high-efficiency, low-cost, and stable solar cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Reynolds DC, Look DC, Jogai B, Litton CW, Cantwell G, Harsch WC (1999) Valence-band ordering in ZnO. Phys Rev B 60:2340–2344CrossRef Reynolds DC, Look DC, Jogai B, Litton CW, Cantwell G, Harsch WC (1999) Valence-band ordering in ZnO. Phys Rev B 60:2340–2344CrossRef
2.
go back to reference Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng, B 80:383–387CrossRef Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng, B 80:383–387CrossRef
3.
go back to reference Chang YM, Shieh J, Chu PY, Lee HY, Lin CM, Juang JY (2011) Enhanced free exciton and direct band-edge emissions at room temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition. ACS Appl Mater Interface 3:4415–4419CrossRef Chang YM, Shieh J, Chu PY, Lee HY, Lin CM, Juang JY (2011) Enhanced free exciton and direct band-edge emissions at room temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition. ACS Appl Mater Interface 3:4415–4419CrossRef
6.
go back to reference Suh HW, Kim GY, Jung YS, Choi WK, Byun D (2005) Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis. J Appl Phys 97:044305CrossRef Suh HW, Kim GY, Jung YS, Choi WK, Byun D (2005) Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis. J Appl Phys 97:044305CrossRef
7.
go back to reference Hughes WL, Wang ZL (2005) Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl Phys Lett 86:043106CrossRef Hughes WL, Wang ZL (2005) Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl Phys Lett 86:043106CrossRef
8.
go back to reference Huang SY, Cheng QJ, Xu S, Wei DY, Zhou HP, Long JD, Levchenko I, Ostrikov K (2012) Self-organized ZnO nanodot arrays: effective control using SiNx interlayers and low-temperature plasmas. J Appl Phys 111:036101CrossRef Huang SY, Cheng QJ, Xu S, Wei DY, Zhou HP, Long JD, Levchenko I, Ostrikov K (2012) Self-organized ZnO nanodot arrays: effective control using SiNx interlayers and low-temperature plasmas. J Appl Phys 111:036101CrossRef
9.
go back to reference Zhong XX, Wu XC, Ostrikov K (2010) Pulsed i-PVD of dielectric nanodot arrays using a nanoporous template. Plasma Process Polym 6:161–169CrossRef Zhong XX, Wu XC, Ostrikov K (2010) Pulsed i-PVD of dielectric nanodot arrays using a nanoporous template. Plasma Process Polym 6:161–169CrossRef
10.
go back to reference Cher W, Yick S, Xu S, Han ZJ, Ostrikov K (2011) Structural, optical and electrical properties of Al-doped ZnO transparent conducting oxide for solar cell applications. Funct Mater Lett 4:401–405CrossRef Cher W, Yick S, Xu S, Han ZJ, Ostrikov K (2011) Structural, optical and electrical properties of Al-doped ZnO transparent conducting oxide for solar cell applications. Funct Mater Lett 4:401–405CrossRef
11.
go back to reference Rakshit T, Mondal SP, Manna I, Ray SK (2012) CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices. ACS Appl Mater Interface 4:6085–6095CrossRef Rakshit T, Mondal SP, Manna I, Ray SK (2012) CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices. ACS Appl Mater Interface 4:6085–6095CrossRef
12.
go back to reference Ji LW, Peng SM, Su YK, Young SJ, Wu CZ, Cheng WB (2009) Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays. Appl Phys Lett 94:203106CrossRef Ji LW, Peng SM, Su YK, Young SJ, Wu CZ, Cheng WB (2009) Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays. Appl Phys Lett 94:203106CrossRef
13.
go back to reference An SJ, Chae JH, Yi GC, Park GH (2008) Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl Phys Lett 92:121108CrossRef An SJ, Chae JH, Yi GC, Park GH (2008) Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl Phys Lett 92:121108CrossRef
14.
go back to reference Willander M, Nur O, Zhao QX, Yang LL, Lorenz M, Cao BQ, Pérez JZ, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Mofor AC, Postels B, Waag A, Boukos N, Travlos A, Kwack HS, Guinard J, Dang DLS (2009) Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20:332001CrossRef Willander M, Nur O, Zhao QX, Yang LL, Lorenz M, Cao BQ, Pérez JZ, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Mofor AC, Postels B, Waag A, Boukos N, Travlos A, Kwack HS, Guinard J, Dang DLS (2009) Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20:332001CrossRef
15.
go back to reference Lupan O, Chai GY, Chow L (2008) Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron Eng 85:2220–2225CrossRef Lupan O, Chai GY, Chow L (2008) Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron Eng 85:2220–2225CrossRef
16.
go back to reference Wang LW, Kang YF, Liu XH, Zhang SM, Huang WP, Wang SR (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuat B-Chem 162:237–243CrossRef Wang LW, Kang YF, Liu XH, Zhang SM, Huang WP, Wang SR (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuat B-Chem 162:237–243CrossRef
17.
go back to reference Chen JY, Sun KW (2010) Growth of vertically aligned ZnO nanorod arrays as anti-reflection layer on silicon solar cell. Sol Energy Mater Sol C 94:930–940CrossRef Chen JY, Sun KW (2010) Growth of vertically aligned ZnO nanorod arrays as anti-reflection layer on silicon solar cell. Sol Energy Mater Sol C 94:930–940CrossRef
18.
go back to reference Áe L, Kieven D, Chen J, Klenk R, Rissom T, Tang Y, Lux-Steiner MC (2010) ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog Photovolt Res Appl 18:209–213CrossRef Áe L, Kieven D, Chen J, Klenk R, Rissom T, Tang Y, Lux-Steiner MC (2010) ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog Photovolt Res Appl 18:209–213CrossRef
19.
go back to reference Pu XX, Liu J, Liang J, Xia YS, Feng WL, Wang YW, Yu XB (2014) Effective CdS/ZnO nanorod arrays as antireflection coatings for light trapping in c-Si solar cells. RSC Adv 4:23149–23154CrossRef Pu XX, Liu J, Liang J, Xia YS, Feng WL, Wang YW, Yu XB (2014) Effective CdS/ZnO nanorod arrays as antireflection coatings for light trapping in c-Si solar cells. RSC Adv 4:23149–23154CrossRef
20.
go back to reference Ahrlich M, Sergeev O, Juilfs M, Neumüeller A, Vehse M, Agert C (2016) Improved light management in silicon heterojunction solar cells by application of a ZnO nanorod antireflective layer. Energy Procedia 92:284–290CrossRef Ahrlich M, Sergeev O, Juilfs M, Neumüeller A, Vehse M, Agert C (2016) Improved light management in silicon heterojunction solar cells by application of a ZnO nanorod antireflective layer. Energy Procedia 92:284–290CrossRef
21.
go back to reference Umar A, Karunagaran B, Suh EK, Hahn YB (2006) Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 17:4072–4077CrossRef Umar A, Karunagaran B, Suh EK, Hahn YB (2006) Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 17:4072–4077CrossRef
22.
go back to reference Park JY, Lee DJ, Kim SS (2005) Size control of ZnO nanorod arrays grown by metalorganic chemical vapour deposition. Nanotechnology 16:2044–2047CrossRef Park JY, Lee DJ, Kim SS (2005) Size control of ZnO nanorod arrays grown by metalorganic chemical vapour deposition. Nanotechnology 16:2044–2047CrossRef
23.
go back to reference Lee DJ, Park JY, Yun YS, Hong YS, Moon JH, Lee BT, Kim SS (2005) Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates. J Cryst Growth 276:458–464CrossRef Lee DJ, Park JY, Yun YS, Hong YS, Moon JH, Lee BT, Kim SS (2005) Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates. J Cryst Growth 276:458–464CrossRef
24.
go back to reference Kim DC, Kong BH, Cho HK, Park DJ, Lee JY (2007) Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition. Nanotechnology 18:015603CrossRef Kim DC, Kong BH, Cho HK, Park DJ, Lee JY (2007) Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition. Nanotechnology 18:015603CrossRef
25.
go back to reference Heo YW, Varadarajan V, Kaufman M, Kim K, Norton DP, Ren F, Fleming PH (2002) Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl Phys Lett 81:3046–3048CrossRef Heo YW, Varadarajan V, Kaufman M, Kim K, Norton DP, Ren F, Fleming PH (2002) Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl Phys Lett 81:3046–3048CrossRef
26.
go back to reference Li QW, Bian JM, Sun J, Wang JC, Luo YM, Sun KT, Yu DQ (2010) Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl Surf Sci 256:1698–1702CrossRef Li QW, Bian JM, Sun J, Wang JC, Luo YM, Sun KT, Yu DQ (2010) Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl Surf Sci 256:1698–1702CrossRef
27.
go back to reference Yi SH, Choi SK, Jang JM, Kim JA, Jung WG (2007) Low-temperature growth of ZnO nanorods by chemical bath deposition. J Colloid Interface Sci 313:705–710CrossRef Yi SH, Choi SK, Jang JM, Kim JA, Jung WG (2007) Low-temperature growth of ZnO nanorods by chemical bath deposition. J Colloid Interface Sci 313:705–710CrossRef
28.
go back to reference Bekermann D, Gasparotto A, Barreca D, Bovo L, Devi A, Fischer RA, Lebedev OI, Maccato C, Tondello E, Tendeloo GV (2010) Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. Cryst Growth Des 10:2011–2018CrossRef Bekermann D, Gasparotto A, Barreca D, Bovo L, Devi A, Fischer RA, Lebedev OI, Maccato C, Tondello E, Tendeloo GV (2010) Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. Cryst Growth Des 10:2011–2018CrossRef
29.
go back to reference Richards BS (2003) Single-material TiO2 double-layer antireflection coatings. Sol Energy Mater Sol C 79:369–390CrossRef Richards BS (2003) Single-material TiO2 double-layer antireflection coatings. Sol Energy Mater Sol C 79:369–390CrossRef
30.
go back to reference Cao XL, Chen YM (2011) Simulation and analysis on the property of aluminum back-surface-field of mono-crystalline silicon solar cells. J Optoelectron Adv M 13:432–438 Cao XL, Chen YM (2011) Simulation and analysis on the property of aluminum back-surface-field of mono-crystalline silicon solar cells. J Optoelectron Adv M 13:432–438
31.
go back to reference Spinelli P, Verschuuren MA, Polman A (2012) Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692CrossRef Spinelli P, Verschuuren MA, Polman A (2012) Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692CrossRef
32.
go back to reference Wilson SJ, Hutley MC (1982) The optical properties of ‘Moth Eye’ antireflection surfaces. Opt Acta 29:993–1009CrossRef Wilson SJ, Hutley MC (1982) The optical properties of ‘Moth Eye’ antireflection surfaces. Opt Acta 29:993–1009CrossRef
33.
go back to reference Rackauskas S, Nasibulin AG, Jiang H, Tian Y, Statkute G, Shandakov SD, Lipsanen H, Kauppinen EI (2009) Mechanistic investigation of ZnO nanowire growth. Appl Phys Lett 95:183114CrossRef Rackauskas S, Nasibulin AG, Jiang H, Tian Y, Statkute G, Shandakov SD, Lipsanen H, Kauppinen EI (2009) Mechanistic investigation of ZnO nanowire growth. Appl Phys Lett 95:183114CrossRef
34.
go back to reference Cao BQ, Li Y, Duan GT, Cai WP (2006) Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method. Cryst Growth Des 6:1091–1094CrossRef Cao BQ, Li Y, Duan GT, Cai WP (2006) Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method. Cryst Growth Des 6:1091–1094CrossRef
35.
go back to reference Florica C, Preda N, Costas A, Zgura I, Enculescu I (2016) ZnO nanowires grown directly on zinc foils by thermal oxidation in air: wetting and water adhesion properties. Mater Lett 170:156–159CrossRef Florica C, Preda N, Costas A, Zgura I, Enculescu I (2016) ZnO nanowires grown directly on zinc foils by thermal oxidation in air: wetting and water adhesion properties. Mater Lett 170:156–159CrossRef
36.
go back to reference Bruggeman VD (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann Phys 416:636–664CrossRef Bruggeman VD (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann Phys 416:636–664CrossRef
37.
go back to reference Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505CrossRef Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505CrossRef
38.
go back to reference Stavenga DG, Foletti S, Palasantzas G, Arikawa K (2006) Light on the moth-eye corneal nipple array of butterflies. Proc R Soc B 273:661–667CrossRef Stavenga DG, Foletti S, Palasantzas G, Arikawa K (2006) Light on the moth-eye corneal nipple array of butterflies. Proc R Soc B 273:661–667CrossRef
39.
go back to reference Nowak RE, Vehse M, Sergeev O, Voss T, Seyfried M, Maydell KV, Agert C (2014) ZnO nanorods with broadband antireflective properties for improved light management in silicon thin-film solar cells. Adv Opt Mater 2:94–99CrossRef Nowak RE, Vehse M, Sergeev O, Voss T, Seyfried M, Maydell KV, Agert C (2014) ZnO nanorods with broadband antireflective properties for improved light management in silicon thin-film solar cells. Adv Opt Mater 2:94–99CrossRef
40.
go back to reference Tiedje T, Yablonovitch E, Cody GD, Brooks BG (1984) Limiting efficiency of silicon solar cells. IEEE Trans Electron Dev 31:711–716CrossRef Tiedje T, Yablonovitch E, Cody GD, Brooks BG (1984) Limiting efficiency of silicon solar cells. IEEE Trans Electron Dev 31:711–716CrossRef
Metadata
Title
Plasma-produced ZnO nanorod arrays as an antireflective layer in c-Si solar cells
Authors
Feifei Huang
Bin Guo
Shuai Li
Junchi Fu
Ling Zhang
Guanhua Lin
Qinru Yang
Qijin Cheng
Publication date
09-11-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3099-1

Other articles of this Issue 5/2019

Journal of Materials Science 5/2019 Go to the issue

Premium Partners