Skip to main content
Top
Published in: Journal of Material Cycles and Waste Management 6/2020

01-08-2020 | ORIGINAL ARTICLE

Plasma pyrolysis feasibility study of spent petrochemical catalyst wastes to hydrogen production

Authors: Hanieh Karimi, Mohammad Reza Khani, Mahtab Gharibi, Hamed Mahdikia, Babak Shokri

Published in: Journal of Material Cycles and Waste Management | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spent petrochemical catalysts are hazardous toxic wastes and dangerous to the environment and human health, due to heavy metals, coke, and other poisonous elements. Researchers over the years focus to utilize and handle the spent catalysts waste to produce other valuable products as an attractive option from environmental and economic points of view. This article generally discusses feasible methods to convert spent petrochemical waste catalysts to value-added products using a thermal plasma torch for the first time. The arc temperature which increases with power increase was measured by optical emission spectroscopy (OES). The result reveals that no spent catalyst waste remains after plasma pyrolysis process and conversion is completely feasible. Furthermore, the major product H2 for fuel cell was produced, that is environmentally and economically beneficial. Methane, ethane, ethylene, and isobutane were the main products. The best plasma effect on the spent petrochemical catalyst waste in terms of the maximum hydrogen production rate was obtained at 140 A, 30 V, and 3 cc feed injection which causes to produce 53.2% H2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dou S et al. (2018) Plasma‐assisted synthesis and surface modification of electrode materials for renewable energy. Adv Mater 1705850 Dou S et al. (2018) Plasma‐assisted synthesis and surface modification of electrode materials for renewable energy. Adv Mater 1705850
2.
go back to reference Bayatsarmadi B et al (2017) Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13(21):1700191 Bayatsarmadi B et al (2017) Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13(21):1700191
3.
go back to reference Lee DU et al (2016) Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. J Mater Chem A 4(19):7107–7134 Lee DU et al (2016) Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. J Mater Chem A 4(19):7107–7134
4.
go back to reference Jun Li KL, Shengjun Y, Yaojian L, Dan H (2016) Application of thermal plasma technology for the treatment of solid wastes in China: an overview. Waste Manag 58:260–269 Jun Li KL, Shengjun Y, Yaojian L, Dan H (2016) Application of thermal plasma technology for the treatment of solid wastes in China: an overview. Waste Manag 58:260–269
5.
go back to reference Khani M et al (2014) Effect of microwave plasma torch on the pyrolysis fuel oil in the presence of methane and ethane to increase hydrogen production. Int J Hydrogen Energy 39(33):18812–18819 Khani M et al (2014) Effect of microwave plasma torch on the pyrolysis fuel oil in the presence of methane and ethane to increase hydrogen production. Int J Hydrogen Energy 39(33):18812–18819
6.
go back to reference Xin-gang Z et al (2016) Technology, cost, a performance of waste-to-energy incineration industry in China. Renew Sustain Energy Rev 55:115–130 Xin-gang Z et al (2016) Technology, cost, a performance of waste-to-energy incineration industry in China. Renew Sustain Energy Rev 55:115–130
7.
go back to reference Zhao X-G et al (2016) Economic analysis of waste-to-energy industry in China. Waste Manag 48:604–618 Zhao X-G et al (2016) Economic analysis of waste-to-energy industry in China. Waste Manag 48:604–618
8.
go back to reference Sánchez-García M et al (2015) Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Biores Technol 192:272–279 Sánchez-García M et al (2015) Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Biores Technol 192:272–279
9.
go back to reference Ojha A, Reuben AC, Sharma D (2012) Solid waste management in developing countries through plasma arc gasification-an alternative approach. APCBEE Procedia 1:193–198 Ojha A, Reuben AC, Sharma D (2012) Solid waste management in developing countries through plasma arc gasification-an alternative approach. APCBEE Procedia 1:193–198
10.
go back to reference Van der Walt I et al (2012) An economic evaluation for small scale thermal plasma waste-to-energy systems. In: Proceedings of the international plasma chemistry society, vol 21 Van der Walt I et al (2012) An economic evaluation for small scale thermal plasma waste-to-energy systems. In: Proceedings of the international plasma chemistry society, vol 21
11.
go back to reference Williams R, Jenkins B, Nguyen D (2003) Solid waste conversion: A review and database of current and emerging technologies. Final report, Department of Biological and Agricultural Engineering, University of California, Davis Williams R, Jenkins B, Nguyen D (2003) Solid waste conversion: A review and database of current and emerging technologies. Final report, Department of Biological and Agricultural Engineering, University of California, Davis
12.
go back to reference Duan S et al (2017) Plasma surface modification of materials and their entrapment of water contaminant: a review. Plasma Process Polym 14(9):1600218 Duan S et al (2017) Plasma surface modification of materials and their entrapment of water contaminant: a review. Plasma Process Polym 14(9):1600218
13.
go back to reference Ruj B, Ghosh S (2014) Technological aspects for thermal plasma treatment of municipal solid waste—a review. Fuel Process Technol 126:298–308 Ruj B, Ghosh S (2014) Technological aspects for thermal plasma treatment of municipal solid waste—a review. Fuel Process Technol 126:298–308
14.
go back to reference Gomez E et al (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161(2–3):614–626 Gomez E et al (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161(2–3):614–626
15.
go back to reference Desmet T et al (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromol 10(9):2351–2378 Desmet T et al (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromol 10(9):2351–2378
16.
go back to reference Chu PK et al (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5–6):143–206 Chu PK et al (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5–6):143–206
17.
go back to reference Bogaerts A et al (2002) Gas discharge plasmas and their applications. Spectrochim Acta, Part B 57(4):609–658 Bogaerts A et al (2002) Gas discharge plasmas and their applications. Spectrochim Acta, Part B 57(4):609–658
18.
go back to reference Kizling MB, Järås SG (1996) A review of the use of plasma techniques in catalyst preparation and catalytic reactions. Appl Catal A 147(1):1–21 Kizling MB, Järås SG (1996) A review of the use of plasma techniques in catalyst preparation and catalytic reactions. Appl Catal A 147(1):1–21
19.
go back to reference Huang H, Tang L (2007) Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers Manag 48(4):1331–1337 Huang H, Tang L (2007) Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers Manag 48(4):1331–1337
20.
go back to reference Bonizzoni G, Vassallo E (2002) Plasma physics and technology; industrial applications. Vacuum 64(3–4):327–336 Bonizzoni G, Vassallo E (2002) Plasma physics and technology; industrial applications. Vacuum 64(3–4):327–336
21.
go back to reference Agon N et al (2016) Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents. Waste Manag 47:246–255 Agon N et al (2016) Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents. Waste Manag 47:246–255
22.
go back to reference Materazzi M et al (2016) Performance analysis of RDF gasification in a two stage fluidized bed–plasma process. Waste Manag 47:256–266 Materazzi M et al (2016) Performance analysis of RDF gasification in a two stage fluidized bed–plasma process. Waste Manag 47:256–266
23.
go back to reference Materazzi M et al (2013) Thermodynamic modelling and evaluation of a two-stage thermal process for waste gasification. Fuel 108:356–369 Materazzi M et al (2013) Thermodynamic modelling and evaluation of a two-stage thermal process for waste gasification. Fuel 108:356–369
24.
go back to reference Wang Q et al (2010) Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere 78(5):626–630 Wang Q et al (2010) Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere 78(5):626–630
25.
go back to reference Basu P (2006) Combustion and gasification in fluidized beds. CRC Press, USA Basu P (2006) Combustion and gasification in fluidized beds. CRC Press, USA
26.
go back to reference Tang L, Huang H (2004) An investigation of sulfur distribution during thermal plasma pyrolysis of used tires. J Anal Appl Pyrol 72(1):35–40 Tang L, Huang H (2004) An investigation of sulfur distribution during thermal plasma pyrolysis of used tires. J Anal Appl Pyrol 72(1):35–40
27.
go back to reference Gandhi H (2015) Plasma gasification: from a dirty city to a heavenly place and from waste solids to clean fuel. Int J Innov Res Sci Technol 1:18–24 Gandhi H (2015) Plasma gasification: from a dirty city to a heavenly place and from waste solids to clean fuel. Int J Innov Res Sci Technol 1:18–24
28.
go back to reference Fabry F et al (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valorization 4(3):421–439 Fabry F et al (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valorization 4(3):421–439
29.
go back to reference Yang L et al (2011) Solid waste plasma disposal plant. J Electrostat 69(5):411–413 Yang L et al (2011) Solid waste plasma disposal plant. J Electrostat 69(5):411–413
30.
go back to reference Young GC (2010) Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons. Wiley, USA Young GC (2010) Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons. Wiley, USA
31.
go back to reference Murphy A (1999) Plasma destruction of gaseous and liquid wastes. Ann N Y Acad Sci 891(1):106–123 Murphy A (1999) Plasma destruction of gaseous and liquid wastes. Ann N Y Acad Sci 891(1):106–123
32.
go back to reference Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41(5):053001 Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41(5):053001
33.
go back to reference Pacheco J et al (2001) Recovering energetic gas from hydrocarbon solutions treated by thermal plasma. In: Proceedings of 25th international conference on phenomena in ionized gases Pacheco J et al (2001) Recovering energetic gas from hydrocarbon solutions treated by thermal plasma. In: Proceedings of 25th international conference on phenomena in ionized gases
34.
go back to reference Kim S-W, Park H-S, Kim H-J (2003) 100 kW steam plasma process for treatment of PCBs (polychlorinated biphenyls) waste. Vacuum 70(1):59–66 Kim S-W, Park H-S, Kim H-J (2003) 100 kW steam plasma process for treatment of PCBs (polychlorinated biphenyls) waste. Vacuum 70(1):59–66
35.
go back to reference Burkhard R, Hoffelner W, Eschenbach R (1994) Recycling of metals from waste with thermal plasma. Resour Conserv Recycl 10(1–2):11–16 Burkhard R, Hoffelner W, Eschenbach R (1994) Recycling of metals from waste with thermal plasma. Resour Conserv Recycl 10(1–2):11–16
36.
go back to reference Wong FF et al (2006) Recovery and reduction of spent nickel oxide catalyst via plasma sintering technique. Plasma Chem Plasma Process 26(6):585–595 Wong FF et al (2006) Recovery and reduction of spent nickel oxide catalyst via plasma sintering technique. Plasma Chem Plasma Process 26(6):585–595
37.
go back to reference Chiang K-C et al (2011) Recovery of spent alumina-supported platinum catalyst and reduction of platinum oxide via plasma sintering technique. J Taiwan Inst Chem Eng 42(1):158–165 Chiang K-C et al (2011) Recovery of spent alumina-supported platinum catalyst and reduction of platinum oxide via plasma sintering technique. J Taiwan Inst Chem Eng 42(1):158–165
38.
go back to reference Marafi M, Rana M (2016) Refinery waste: the spent hydroprocessing catalyst and its recycling options. In: 8th international conference on waste management and the environment (proceedings) Marafi M, Rana M (2016) Refinery waste: the spent hydroprocessing catalyst and its recycling options. In: 8th international conference on waste management and the environment (proceedings)
39.
go back to reference Khosravi A et al (2018) The processing of pyrolysis fuel oil by dielectric barrier discharge plasma torch. Plasma Chem Plasma Process 38(2):365–378 Khosravi A et al (2018) The processing of pyrolysis fuel oil by dielectric barrier discharge plasma torch. Plasma Chem Plasma Process 38(2):365–378
40.
go back to reference Gharibi M et al (2015) Dielectric barrier discharge plasma torch treatment of pyrolysis fuel oil in presence of methane and ethane. J Electrostat 76:178–187 Gharibi M et al (2015) Dielectric barrier discharge plasma torch treatment of pyrolysis fuel oil in presence of methane and ethane. J Electrostat 76:178–187
41.
go back to reference Khani MR et al (2015) Conversion of pyrolysis fuel oils by a dielectric barrier discharge reactor in the presence of methane and ethane. Chem Eng Technol 38(8):1452–1459 Khani MR et al (2015) Conversion of pyrolysis fuel oils by a dielectric barrier discharge reactor in the presence of methane and ethane. Chem Eng Technol 38(8):1452–1459
42.
go back to reference Khani MR et al (2014) Study on the feasibility of plasma (DBD Reactor) cracking of different hydrocarbons (n-hexadecane, lubricating oil, and heavy oil). IEEE Trans Plasma Sci 42(9):2213–2220 Khani MR et al (2014) Study on the feasibility of plasma (DBD Reactor) cracking of different hydrocarbons (n-hexadecane, lubricating oil, and heavy oil). IEEE Trans Plasma Sci 42(9):2213–2220
43.
go back to reference Khani M et al (2014) The effects of microwave plasma torch on the cracking of pyrolysis fuel oil feedstock. Chem Eng J 237:169–175 Khani M et al (2014) The effects of microwave plasma torch on the cracking of pyrolysis fuel oil feedstock. Chem Eng J 237:169–175
44.
go back to reference Auciello O, Flamm DL (2013) Plasma diagnostics: discharge parameters and chemistry, Academic Press, USA Auciello O, Flamm DL (2013) Plasma diagnostics: discharge parameters and chemistry, Academic Press, USA
45.
go back to reference Kunze H-J (2009) Introduction to plasma spectroscopy, Springer Science & Business Media, Berlin Kunze H-J (2009) Introduction to plasma spectroscopy, Springer Science & Business Media, Berlin
46.
go back to reference Radziemski LJ, Cremers DA (2006) Handbook of laser induced breakdown spectroscopy, Wiley, USA, pp 1–4 Radziemski LJ, Cremers DA (2006) Handbook of laser induced breakdown spectroscopy, Wiley, USA, pp 1–4
Metadata
Title
Plasma pyrolysis feasibility study of spent petrochemical catalyst wastes to hydrogen production
Authors
Hanieh Karimi
Mohammad Reza Khani
Mahtab Gharibi
Hamed Mahdikia
Babak Shokri
Publication date
01-08-2020
Publisher
Springer Japan
Published in
Journal of Material Cycles and Waste Management / Issue 6/2020
Print ISSN: 1438-4957
Electronic ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-020-01089-0

Other articles of this Issue 6/2020

Journal of Material Cycles and Waste Management 6/2020 Go to the issue