Skip to main content
Top

2018 | OriginalPaper | Chapter

66. Plasma Waste Destruction

Authors : Milan Hrabovsky, Izak Jacobus van der Walt

Published in: Handbook of Thermal Science and Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter analyzes the physical and technological aspects of waste treatment using thermal plasma technology. The waste treatment problems are briefly characterized and an overview of methods of waste treatment is presented. Main industrial-scale plasma waste treatment units installed in the world are described. Basic principles of plasma waste treatment systems are presented and processes of waste-to-energy conversion by plasma gasification of organics are analyzed. Potential advantages of using plasma for gasification are summarized, fundamental chemistry of the plasma gasification process as well as basic thermodynamics, the energy balance, and the kinetics of the process are described. Examples of results of thermal plasma gasification of various organic wastes are presented. Produced gas compositions for different feed materials are shown, including sawdust, wooden pellets, brown coal, polyethylene, and pyrolytic oil produced from car tires. The results show that it is possible to produce syngas of high hydrogen and carbon monoxide content, with low levels of contaminants, and with a high calorific value. Plasma gasification is a process with huge potential for converting low-value materials to a high-value fuel, syngas. The process offers at the same time a means to convert electrical energy to chemical energy, which is particularly relevant to the storage of renewable energy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference ASME SWPD (2007) Energy from municipal solid waste: a renewable energy source, white paper submitted to Congress by ASME SWPD, ASME Solid Waste Processing Division ASME SWPD (2007) Energy from municipal solid waste: a renewable energy source, white paper submitted to Congress by ASME SWPD, ASME Solid Waste Processing Division
go back to reference Bird R, Steward W, Lightfoot E (2002) Transport phenomina. Wiley, New York Bird R, Steward W, Lightfoot E (2002) Transport phenomina. Wiley, New York
go back to reference Boerrigter H, vanderDrift B (2005) “Biosyngas“ key-intermediate for production of renewable transportation fuels, chemicals and electricity, 14th European Biomass Conf.&Exhibition Boerrigter H, vanderDrift B (2005) “Biosyngas“ key-intermediate for production of renewable transportation fuels, chemicals and electricity, 14th European Biomass Conf.&Exhibition
go back to reference Boulos M, Fauchais P, Pfender E (1994) Thermal plasma fundamentals and applications. Plenum Press, New York Boulos M, Fauchais P, Pfender E (1994) Thermal plasma fundamentals and applications. Plenum Press, New York
go back to reference Carabin P, Holcroft G (2005) Plasma resource recovery technology – converting waste to energy and valuable products, 13th North American Waste to Energy Conference, Orlando Carabin P, Holcroft G (2005) Plasma resource recovery technology – converting waste to energy and valuable products, 13th North American Waste to Energy Conference, Orlando
go back to reference Coufal O (1994) Composition of the reacting mixture SF6 and cu in the range from 298.15 to 3000 K and 0.1 to 2 Mpa. High Temp Mat Process 3:117–139 Coufal O (1994) Composition of the reacting mixture SF6 and cu in the range from 298.15 to 3000 K and 0.1 to 2 Mpa. High Temp Mat Process 3:117–139
go back to reference Coufal O, Sezemsky P, Zivny O (2005) Database system of thermodynamic properties of individual substances at high temperatures. J Phys D Appl Phys 38:1265–1274CrossRef Coufal O, Sezemsky P, Zivny O (2005) Database system of thermodynamic properties of individual substances at high temperatures. J Phys D Appl Phys 38:1265–1274CrossRef
go back to reference Dietenberger M (2002) Update for combustion properties of wood components. Fire Mater 26:255–267CrossRef Dietenberger M (2002) Update for combustion properties of wood components. Fire Mater 26:255–267CrossRef
go back to reference Fabry F, Rehmet C, Rohani V, Fulcheri L (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valor 4:421–439CrossRef Fabry F, Rehmet C, Rohani V, Fulcheri L (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valor 4:421–439CrossRef
go back to reference Fang K et al. (2009) A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas, catalytic synthesis and utilization of alcohols, 236th National Meeting & Exposition, Philadelphia, ACSCrossRef Fang K et al. (2009) A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas, catalytic synthesis and utilization of alcohols, 236th National Meeting & Exposition, Philadelphia, ACSCrossRef
go back to reference Gomez E et al (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161:614–626CrossRef Gomez E et al (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161:614–626CrossRef
go back to reference He X et al (2012) Analysis of life-cycle energy use and GHG emissions of the biomass-to-ethanol pathway of the Coskata process under Chinese conditions. Low Carbon Econ 3:106–110CrossRef He X et al (2012) Analysis of life-cycle energy use and GHG emissions of the biomass-to-ethanol pathway of the Coskata process under Chinese conditions. Low Carbon Econ 3:106–110CrossRef
go back to reference Heberlein J, Murphy A (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001CrossRef Heberlein J, Murphy A (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001CrossRef
go back to reference Higman C, Van der Burgt M (2008) Gasification. In: Gasification, 2nd edn. Elsevier Science, Burlington Higman C, Van der Burgt M (2008) Gasification. In: Gasification, 2nd edn. Elsevier Science, Burlington
go back to reference Hrabovsky M (2017) Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem Plasma Process 33:739–762CrossRef Hrabovsky M (2017) Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem Plasma Process 33:739–762CrossRef
go back to reference Hrabovsky M et al (2009) Termal plasma gasification of biomass for fuel gas production. J High Temp Mat Process 13:299–313CrossRef Hrabovsky M et al (2009) Termal plasma gasification of biomass for fuel gas production. J High Temp Mat Process 13:299–313CrossRef
go back to reference IEA Renewable energy working party (2002) Renewable energy into the mainstream. Novem, Netherlands IEA Renewable energy working party (2002) Renewable energy into the mainstream. Novem, Netherlands
go back to reference Krenek P (2008) Thermophysical properties of H2O-Ar plasmas at temperatures 400–50000K and pressure 0,1 MPa. Plasma Chem Pl Process 28:107–122CrossRef Krenek P (2008) Thermophysical properties of H2O-Ar plasmas at temperatures 400–50000K and pressure 0,1 MPa. Plasma Chem Pl Process 28:107–122CrossRef
go back to reference Kreutz T, Larson E, Liu G, Williams R (2008) Fischer-Tropsch fuels from coal and biomass, 25th annual Pittsburgh coal conference, Pittsburgh Kreutz T, Larson E, Liu G, Williams R (2008) Fischer-Tropsch fuels from coal and biomass, 25th annual Pittsburgh coal conference, Pittsburgh
go back to reference Krumpelt M et al (2002) Fuel processing for fuel cell systems in transportation and portable power applications. Catal Today 77:3–16CrossRef Krumpelt M et al (2002) Fuel processing for fuel cell systems in transportation and portable power applications. Catal Today 77:3–16CrossRef
go back to reference Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2(3):556–581CrossRef Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2(3):556–581CrossRef
go back to reference Lesmasle JM, Marcelin M (2001) 1986 Production de gaz de synthsèse par gazéification du bois en lit fluidisé sous pression. ASCAB Internal Report Lesmasle JM, Marcelin M (2001) 1986 Production de gaz de synthsèse par gazéification du bois en lit fluidisé sous pression. ASCAB Internal Report
go back to reference Miller R, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126:97–137CrossRef Miller R, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126:97–137CrossRef
go back to reference Minowa T, Ogi T, Dote Y, Yokoyama S (1994) Methane production from cellulose by catalytic gasification. Renew Energy 5(2):813–815CrossRef Minowa T, Ogi T, Dote Y, Yokoyama S (1994) Methane production from cellulose by catalytic gasification. Renew Energy 5(2):813–815CrossRef
go back to reference Mostaghimi JBM (2015) Thermal plasma sources: how well are they adopted to process needs? Plasma Chem Plasma Process 35:421–436CrossRef Mostaghimi JBM (2015) Thermal plasma sources: how well are they adopted to process needs? Plasma Chem Plasma Process 35:421–436CrossRef
go back to reference Peters M, Timmerhaus K (1991) Plant design and economics for chemical engineers, 4th edn. McGraw-Hill, New York Peters M, Timmerhaus K (1991) Plant design and economics for chemical engineers, 4th edn. McGraw-Hill, New York
go back to reference Rajvanshi AK (1986) Biomass gasification. In: Goswami DY (ed) In alternative energy in agriculture, vol 2. CRC Press, Boca Raton, pp 83–102 Rajvanshi AK (1986) Biomass gasification. In: Goswami DY (ed) In alternative energy in agriculture, vol 2. CRC Press, Boca Raton, pp 83–102
go back to reference Ramazzini N, Malvezzi S, Zambini L (2012) Experience from operating the waste to energy facility in Naples. The ISWA World Solid Waste Congress, Florence Ramazzini N, Malvezzi S, Zambini L (2012) Experience from operating the waste to energy facility in Naples. The ISWA World Solid Waste Congress, Florence
go back to reference Ramboll G, Whitford J (2007) The regional municipality of Halton, Step 1B: EFW technology overview. Deloitte and URS, Oakville Ramboll G, Whitford J (2007) The regional municipality of Halton, Step 1B: EFW technology overview. Deloitte and URS, Oakville
go back to reference Ruj B, Ghosh S (2014) Technological aspects for thermal plasma treatment of municipal solid waste – a review. Fuel Process Technol 126:298–308CrossRef Ruj B, Ghosh S (2014) Technological aspects for thermal plasma treatment of municipal solid waste – a review. Fuel Process Technol 126:298–308CrossRef
go back to reference Steiglitz L, Vogg H (1988) Formation decomposition of polychlorodibenzodioxins and furans in municipal waste report KFK4379. Laboratorium fur Isotopentechnik, Institut for Heize Chemi, Kerforschungszentrum, Karlsruhe Steiglitz L, Vogg H (1988) Formation decomposition of polychlorodibenzodioxins and furans in municipal waste report KFK4379. Laboratorium fur Isotopentechnik, Institut for Heize Chemi, Kerforschungszentrum, Karlsruhe
go back to reference Subramani V, Gangwal SK (n.d.) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Center for Energy Technology, Research Triangle Institute, Research Triangle Park, North Carolina 27709, USA Subramani V, Gangwal SK (n.d.) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Center for Energy Technology, Research Triangle Institute, Research Triangle Park, North Carolina 27709, USA
go back to reference Surisetty V, Kozinski J, Dalai A (2012) Biomass, availability in Canada, and gasification: an overview. Biomass Conv Bioref 2:73–85CrossRef Surisetty V, Kozinski J, Dalai A (2012) Biomass, availability in Canada, and gasification: an overview. Biomass Conv Bioref 2:73–85CrossRef
go back to reference Suzuki S (2007) The Ebara advanced fluidisation process for energy recovery and ash vitrification, 15th annual North American waste-to-energy conference, Miami Suzuki S (2007) The Ebara advanced fluidisation process for energy recovery and ash vitrification, 15th annual North American waste-to-energy conference, Miami
go back to reference Wade_News_Service (2011). World’s largest biomass stirling plant commissioned in Germany. Wade News Service, 19 Dec Wade_News_Service (2011). World’s largest biomass stirling plant commissioned in Germany. Wade News Service, 19 Dec
go back to reference Young G (2010) Municipal solid waste to energy conversion processes: economical, technical and renewable comparisons. Wiley, HobokenCrossRef Young G (2010) Municipal solid waste to energy conversion processes: economical, technical and renewable comparisons. Wiley, HobokenCrossRef
Metadata
Title
Plasma Waste Destruction
Authors
Milan Hrabovsky
Izak Jacobus van der Walt
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_32

Premium Partners