Skip to main content
Top

2020 | OriginalPaper | Chapter

11. Plasmonic Coupling Enhanced Absorption and Fluorescence Emission in Thin Film Luminescent Solar Concentrator

Authors : S. Chandra, S. J. McCormack

Published in: Renewable Energy and Sustainable Buildings

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research studied plasmonic composite structures of red dye molecules and gold nanoparticles (Au NPs) for thin film luminescent solar concentrator (LSC). The plasmonic coupling between the red dye molecules and Au NPs was established through controlled spacing, surface plasmon resonance enhanced local photon mode density, and multiple excitation of red dye molecules. The plasmonic composite thin film LSCs were fabricated using spin coating. Two types of structures, homogenous and multilayer layered plasmonic composite thin film LSCs, were studied. In the homogenous LSC, the Au NPs doping concentration distribution controlled spacing between Au NPs and red dye molecules. The multilayered plasmonic composite, transparent polymer spacer layer of 0.0, 30 ± 5 and 60 ± 5 nm was placed between the red dye molecules and Au NPs film to control volume of red dye molecules experienced plasmonic interaction. Spectroscopic and confocal microscopic characterizations probed localized and macroscopic behavior of plasmonic composite structurers. The thin film LSC edge emission measurements assessed the plasmonic coupling enhanced emission for thin film LSCs and their correlation established optimum plasmonic coupling between red dye molecules and Au NPs. Plasmonic interaction improved optical absorption of the plasmonic composite thin film LSC by ~12% moreover independent spacer layers thickness. The fluorescence emission of plasmonic composite structure enhanced by 13, 20, and 25% for spacing layer 0.0, 30 ± 5 and 60 ± 5 nm, respectively. The electrical characterization of this plasmonic thin film LSC followed optical characterizations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Weber WH, Lambe J (1976) Luminescent greenhouse collector for solar radiation. Appl Opt 15:3–4CrossRef Weber WH, Lambe J (1976) Luminescent greenhouse collector for solar radiation. Appl Opt 15:3–4CrossRef
2.
go back to reference Goetzberger A, Greube W (1977) Solar energy conversion with fluorescent collectors. Appl Phys 14:123–139CrossRef Goetzberger A, Greube W (1977) Solar energy conversion with fluorescent collectors. Appl Phys 14:123–139CrossRef
3.
go back to reference Rapp CF, Boling NL (1978) Luminescent solar concentrator. In: Proceeding of the 13th IEEE PVSC. IEEE, Washington, DC, pp 690–693 Rapp CF, Boling NL (1978) Luminescent solar concentrator. In: Proceeding of the 13th IEEE PVSC. IEEE, Washington, DC, pp 690–693
4.
go back to reference Smestad G, Ries H, Winston R, Yablonovitch E (1990) The thermodynamic limits of light concentrators. Sol Energy Mater 21:99–111CrossRef Smestad G, Ries H, Winston R, Yablonovitch E (1990) The thermodynamic limits of light concentrators. Sol Energy Mater 21:99–111CrossRef
5.
go back to reference Batchelder JS, Zewai AH, Cole T (1979) Luminescent solar concentrators 1: theory of operation and techniques for performance evaluation. Appl Opt 18:3090–3110CrossRef Batchelder JS, Zewai AH, Cole T (1979) Luminescent solar concentrators 1: theory of operation and techniques for performance evaluation. Appl Opt 18:3090–3110CrossRef
6.
go back to reference Earp AA, Smith GB, Franklin J, Swift P (2004) Optimisation of a three-colour luminescent solar concentrator daylighting system. Sol Energy Mater Sol Cells 84:411–426CrossRef Earp AA, Smith GB, Franklin J, Swift P (2004) Optimisation of a three-colour luminescent solar concentrator daylighting system. Sol Energy Mater Sol Cells 84:411–426CrossRef
7.
go back to reference Debije MG, Verbunt PPC (2012) Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater 2:12–35CrossRef Debije MG, Verbunt PPC (2012) Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater 2:12–35CrossRef
8.
go back to reference Wiegman J, van der Kolk E (2012) Building integrated thin film luminescent solar concentrators: detailed efficiency characterization and light transport modelling. Sol Energy Mater Sol Cells 103:41–47CrossRef Wiegman J, van der Kolk E (2012) Building integrated thin film luminescent solar concentrators: detailed efficiency characterization and light transport modelling. Sol Energy Mater Sol Cells 103:41–47CrossRef
9.
go back to reference Norton B, Eames PC, Mallick TK, Huang MJ, Mccormack SJ, Mondol JD, Yohanis YG (2011) Enhancing the performance of building integrated photovoltaics. Sol Energy 85:1629–1664CrossRef Norton B, Eames PC, Mallick TK, Huang MJ, Mccormack SJ, Mondol JD, Yohanis YG (2011) Enhancing the performance of building integrated photovoltaics. Sol Energy 85:1629–1664CrossRef
10.
go back to reference Olson RW, Loring RF, Fayer MD (1981) Luminescent solar concentrators and the reabsorption problem. Appl Opt 20:2934–2940CrossRef Olson RW, Loring RF, Fayer MD (1981) Luminescent solar concentrators and the reabsorption problem. Appl Opt 20:2934–2940CrossRef
11.
go back to reference Wilson LR, Rowan BC, Robertson N, Moudam O, Jones AC, Richards BS (2010) Characterization and reduction of reabsorption losses in luminescent solar concentrators. Appl Opt 49:1651–1661CrossRef Wilson LR, Rowan BC, Robertson N, Moudam O, Jones AC, Richards BS (2010) Characterization and reduction of reabsorption losses in luminescent solar concentrators. Appl Opt 49:1651–1661CrossRef
12.
go back to reference Chandra S, McCormack SJ, Kennedy M, Doran J (2015) Quantum dot solar concentrator: optical transportation and doping concentration optimization. Sol Energy 115:552–561CrossRef Chandra S, McCormack SJ, Kennedy M, Doran J (2015) Quantum dot solar concentrator: optical transportation and doping concentration optimization. Sol Energy 115:552–561CrossRef
13.
go back to reference Debije MG, Verbunt PPC, Rowan BC, Richards BS, Hoeks TL (2008) Measured surface loss from luminescent solar concentrator waveguides. Appl Opt 47:6763–6768CrossRef Debije MG, Verbunt PPC, Rowan BC, Richards BS, Hoeks TL (2008) Measured surface loss from luminescent solar concentrator waveguides. Appl Opt 47:6763–6768CrossRef
14.
go back to reference Leow SW, Corrado C, Osborn M, Isaacson M, Alers G, Carter SA (2013) Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing. J Appl Phys 113:214510–243502CrossRef Leow SW, Corrado C, Osborn M, Isaacson M, Alers G, Carter SA (2013) Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing. J Appl Phys 113:214510–243502CrossRef
15.
go back to reference Reisfeld R, Shamrakov D, Jorgensen C (1994) Photostable solar concentrators based on fluorescent glass films. Sol Energy Mater Sol Cells 33:417–427CrossRef Reisfeld R, Shamrakov D, Jorgensen C (1994) Photostable solar concentrators based on fluorescent glass films. Sol Energy Mater Sol Cells 33:417–427CrossRef
16.
go back to reference Griffini G, Brambilla L, Levi M, Del Zoppo M, Turri S (2013) Photo-degradation of a perylene-based organic luminescent solar concentrator: molecular aspects and device implications. Sol Energy Mater Sol Cells 111:41–48CrossRef Griffini G, Brambilla L, Levi M, Del Zoppo M, Turri S (2013) Photo-degradation of a perylene-based organic luminescent solar concentrator: molecular aspects and device implications. Sol Energy Mater Sol Cells 111:41–48CrossRef
17.
go back to reference Chandra S, Rafiee M, Doran J, Mc Cormack SJ (2018) Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators. Sol Energy Mater Sol Cells 182:331–338CrossRef Chandra S, Rafiee M, Doran J, Mc Cormack SJ (2018) Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators. Sol Energy Mater Sol Cells 182:331–338CrossRef
18.
go back to reference Dienel T, Bauer C, Dolamic I, Brü D (2010) Spectral-based analysis of thin film luminescent solar concentrators. Sol Energy 84:1366–1369CrossRef Dienel T, Bauer C, Dolamic I, Brü D (2010) Spectral-based analysis of thin film luminescent solar concentrators. Sol Energy 84:1366–1369CrossRef
19.
go back to reference Griffini G, Levi M, Turri S (2014) Novel high-durability luminescent solar concentrators based on fluoropolymer coatings. Prog Org Coatings 77:528–536CrossRef Griffini G, Levi M, Turri S (2014) Novel high-durability luminescent solar concentrators based on fluoropolymer coatings. Prog Org Coatings 77:528–536CrossRef
20.
go back to reference Griffini G, Levi M, Turri S (2015) Thin-film luminescent solar concentrators: a device study towards rational design. Renew Energy 78:288–294CrossRef Griffini G, Levi M, Turri S (2015) Thin-film luminescent solar concentrators: a device study towards rational design. Renew Energy 78:288–294CrossRef
21.
go back to reference Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699CrossRef Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699CrossRef
22.
go back to reference Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRef Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRef
23.
go back to reference Calander N, Willander M (2002) Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids. J Appl Phys 92:4878–4884CrossRef Calander N, Willander M (2002) Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids. J Appl Phys 92:4878–4884CrossRef
24.
go back to reference Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871–2875CrossRef Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871–2875CrossRef
25.
go back to reference Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501CrossRef Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501CrossRef
26.
go back to reference Chen Y, Munechika K, Jen-La Plante I, Munro AM, Skrabalak SE, Xia Y, Ginger DS (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl Phys Lett 93:1–4 Chen Y, Munechika K, Jen-La Plante I, Munro AM, Skrabalak SE, Xia Y, Ginger DS (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl Phys Lett 93:1–4
27.
go back to reference Thomas M, Greffet J, Carminati R (2004) Single-molecule spontaneous emission close to absorbing nanostructures. Appl Phys Lett 85:3863–3865CrossRef Thomas M, Greffet J, Carminati R (2004) Single-molecule spontaneous emission close to absorbing nanostructures. Appl Phys Lett 85:3863–3865CrossRef
28.
go back to reference Chandra AJCS, McCormack SJ, Doran J, Kennedy M (2010) New concept for luminescent solar concentrator, in: Proceeding of the 25th European Photovoltaic Solar Energy Conference. WIP Renewable Energies, München, p 759–762 Chandra AJCS, McCormack SJ, Doran J, Kennedy M (2010) New concept for luminescent solar concentrator, in: Proceeding of the 25th European Photovoltaic Solar Energy Conference. WIP Renewable Energies, München, p 759–762
29.
go back to reference Bohren DRHF (1983) Absorption and scattering of light by small particles, 1st edn. Wiley, Hoboken Bohren DRHF (1983) Absorption and scattering of light by small particles, 1st edn. Wiley, Hoboken
30.
go back to reference Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:23–25CrossRef Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:23–25CrossRef
31.
go back to reference Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M, Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2(12):1449–1452CrossRef Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M, Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2(12):1449–1452CrossRef
32.
go back to reference Gryczynski I, Malicka J, Shen Y, Gryczynski Z, Lakowicz JR (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106:2191–2195CrossRef Gryczynski I, Malicka J, Shen Y, Gryczynski Z, Lakowicz JR (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106:2191–2195CrossRef
Metadata
Title
Plasmonic Coupling Enhanced Absorption and Fluorescence Emission in Thin Film Luminescent Solar Concentrator
Authors
S. Chandra
S. J. McCormack
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-18488-9_11