Skip to main content
Top
Published in:

01-12-2023 | Original Article

PLE-MobileBERT: enhancing call content classification during emergencies using the ECP dataset

Authors: K. Nimmi, B. Janet

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article introduces PLE-MobileBERT, a model designed to enhance the classification of emergency calls during crises. It utilizes the ECP dataset from India's 112 emergency helpline, focusing on natural and man-made disasters. The model employs average pooling and the final four layers of MobileBERT to capture semantic information effectively. The authors compare PLE-MobileBERT with various ML and DL models, showing its superior performance in classifying emergency calls. The research highlights the importance of accurate call classification for efficient emergency response and the potential of transformer models in this domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ayo FE, Folorunso O, Ibharalu FT, Osinuga IA (2020) Machine learning techniques for hate speech classification of twitter data: state-of-the-art, future challenges and research directions. Comput Sci Rev 38:100311CrossRef Ayo FE, Folorunso O, Ibharalu FT, Osinuga IA (2020) Machine learning techniques for hate speech classification of twitter data: state-of-the-art, future challenges and research directions. Comput Sci Rev 38:100311CrossRef
go back to reference Basu M, Ghosh S, Jana A, Bandyopadhyay S, Singh R (2017) Resource mapping during a natural disaster: a case study on the 2015 Nepal earthquake. Int J Disaster Risk Reduct 24:24–31CrossRef Basu M, Ghosh S, Jana A, Bandyopadhyay S, Singh R (2017) Resource mapping during a natural disaster: a case study on the 2015 Nepal earthquake. Int J Disaster Risk Reduct 24:24–31CrossRef
go back to reference Basu M, Shandilya A, Khosla P, Ghosh K, Ghosh S (2019) Extracting resource needs and availabilities from microblogs for aiding post-disaster relief operations. IEEE Trans Comput Soc Syst 6:604–618CrossRef Basu M, Shandilya A, Khosla P, Ghosh K, Ghosh S (2019) Extracting resource needs and availabilities from microblogs for aiding post-disaster relief operations. IEEE Trans Comput Soc Syst 6:604–618CrossRef
go back to reference Bisong E (2019) Introduction to scikit-learn. In: Building machine learning and deep learning models on Google cloud platform. Springer, pp 215–229 Bisong E (2019) Introduction to scikit-learn. In: Building machine learning and deep learning models on Google cloud platform. Springer, pp 215–229
go back to reference Coombs WT (2021) Ongoing crisis communication: planning, managing, and responding. Sage Publications, Thousand Oaks Coombs WT (2021) Ongoing crisis communication: planning, managing, and responding. Sage Publications, Thousand Oaks
go back to reference Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:​1810.​04805
go back to reference Ganguly D, Ghosh K (2018) Contextual word embedding: a case study in clustering tweets about emergency situations. In: Companion proceedings of the the web conference, pp 73–74 Ganguly D, Ghosh K (2018) Contextual word embedding: a case study in clustering tweets about emergency situations. In: Companion proceedings of the the web conference, pp 73–74
go back to reference Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) AIDR: artificial intelligence for disaster response. In: Proceedings of the 23rd international conference on world wide web, pp 159–162 Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) AIDR: artificial intelligence for disaster response. In: Proceedings of the 23rd international conference on world wide web, pp 159–162
go back to reference Khosla P, Basu M, Ghosh K, Ghosh S (2017) Microblog retrieval for post-disaster relief: applying and comparing neural IR models. arXiv preprint arXiv:1707.06112 Khosla P, Basu M, Ghosh K, Ghosh S (2017) Microblog retrieval for post-disaster relief: applying and comparing neural IR models. arXiv preprint arXiv:​1707.​06112
go back to reference Liu G, Guo J (2019) Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337:325–338CrossRef Liu G, Guo J (2019) Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337:325–338CrossRef
go back to reference Malla S, Alphonse P (2021) COVID-19 outbreak: an ensemble pre-trained deep learning model for detecting informative tweets. Appl Soft Comput 107:107495CrossRef Malla S, Alphonse P (2021) COVID-19 outbreak: an ensemble pre-trained deep learning model for detecting informative tweets. Appl Soft Comput 107:107495CrossRef
go back to reference Nazer TH, Morstatter F, Dani H, Liu H (2016) Finding requests in social media for disaster relief. In: 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 1410–1413 Nazer TH, Morstatter F, Dani H, Liu H (2016) Finding requests in social media for disaster relief. In: 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 1410–1413
go back to reference Nimmi K, Janet B, Selvan AK, Sivakumaran N (2022) Pre-trained ensemble model for identification of emotion during COVID-19 based on emergency response support system dataset. Appl Soft Comput 122:108842CrossRef Nimmi K, Janet B, Selvan AK, Sivakumaran N (2022) Pre-trained ensemble model for identification of emotion during COVID-19 based on emergency response support system dataset. Appl Soft Comput 122:108842CrossRef
go back to reference Nowak J, Taspinar A, Scherer R (2017) LSTM recurrent neural networks for short text and sentiment classification. In: International conference on artificial intelligence and soft computing. Springer, pp 553–562 Nowak J, Taspinar A, Scherer R (2017) LSTM recurrent neural networks for short text and sentiment classification. In: International conference on artificial intelligence and soft computing. Springer, pp 553–562
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNet Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNet
go back to reference Perkins J (2011) Python text processing with NLTK 2.0 cookbook: LITE. Packt Publishing Ltd., Birmingham Perkins J (2011) Python text processing with NLTK 2.0 cookbook: LITE. Packt Publishing Ltd., Birmingham
go back to reference Phillips B, Neal DM, Webb G (2016) Introduction to emergency management. CRC Press, Boca RatonCrossRef Phillips B, Neal DM, Webb G (2016) Introduction to emergency management. CRC Press, Boca RatonCrossRef
go back to reference Rudra K, Ghosh S, Ganguly N, Goyal P, Ghosh S (2015) Extracting situational information from microblogs during disaster events: a classification-summarization approach. In: Proceedings of the 24th ACM international on conference on information and knowledge management, pp 583–592 Rudra K, Ghosh S, Ganguly N, Goyal P, Ghosh S (2015) Extracting situational information from microblogs during disaster events: a classification-summarization approach. In: Proceedings of the 24th ACM international on conference on information and knowledge management, pp 583–592
go back to reference Sakaki T, Okazaki M, Matsuo Y (2012) Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans Knowl Data Eng 25:919–931CrossRef Sakaki T, Okazaki M, Matsuo Y (2012) Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans Knowl Data Eng 25:919–931CrossRef
go back to reference Sun Z, Yu H, Song X, Liu R, Yang Y, Zhou D (2020) MobileBERT: a compact task-agnostic BERT for resource-limited devices. arXiv preprint arXiv:2004.02984 Sun Z, Yu H, Song X, Liu R, Yang Y, Zhou D (2020) MobileBERT: a compact task-agnostic BERT for resource-limited devices. arXiv preprint arXiv:​2004.​02984
go back to reference Verma S, Vieweg S, Corvey W, Palen L, Martin J, Palmer M, Schram A, Anderson K (2011) Natural language processing to the rescue? Extracting" situational awareness" tweets during mass emergency. In: Proceedings of the international AAAI conference on web and social media, pp 385–392 Verma S, Vieweg S, Corvey W, Palen L, Martin J, Palmer M, Schram A, Anderson K (2011) Natural language processing to the rescue? Extracting" situational awareness" tweets during mass emergency. In: Proceedings of the international AAAI conference on web and social media, pp 385–392
go back to reference Vieweg S, Hughes AL, Starbird K, Palen L (2010) Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1079–1088 Vieweg S, Hughes AL, Starbird K, Palen L (2010) Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1079–1088
go back to reference Zhang Z, Zou Y, Gan C (2018) Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression. Neurocomputing 275:1407–1415CrossRef Zhang Z, Zou Y, Gan C (2018) Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression. Neurocomputing 275:1407–1415CrossRef
go back to reference Zhao S, Zhang T, Hu M, Chang W, You F (2022) AP-BERT: enhanced pre-trained model through average pooling. Appl Intell 52(14):15929–15937CrossRef Zhao S, Zhang T, Hu M, Chang W, You F (2022) AP-BERT: enhanced pre-trained model through average pooling. Appl Intell 52(14):15929–15937CrossRef
Metadata
Title
PLE-MobileBERT: enhancing call content classification during emergencies using the ECP dataset
Authors
K. Nimmi
B. Janet
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01149-x

Premium Partner