Skip to main content
Top

2019 | OriginalPaper | Chapter

4. PLGA-Based Mucosal Nanovaccines

Authors : Sergio Rosales-Mendoza, Omar González-Ortega

Published in: Nanovaccines

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Poly(D,L-lactic-co-glycolic acid) (PLGA or PLG) is a linear copolymer composed of lactic and glycolic acids with biodegradability and biocompatibility properties recognized by the FDA. PLGA nanoparticles have been applied in vaccinology as antigen delivery vehicles capable of protecting antigens from degradation and being efficiently captured by antigen presenting cells. The current status on the development of PLGA-based nanovaccines is presented in this chapter and the key perspectives for this topic identified. Bacterial, viral, and allergic diseases have been targeted by using PLGA-based formulations. For most of the candidates enhanced humoral responses providing immunoprotection against experimental pathogen challenges has been achieved. Enhancement of cytotoxic lymphocyte responses has also been proven, generating relevant perspectives in the field of cancer immunotherapy. The promising findings from the evaluations of PLGA-based nanovaccines justifies the completion of preclinical evaluations for many candidates and, given the experience on the use of PLGA in the biomedical field, the beginning of clinical trials is anticipated in the short term. Therefore, among the currently available nanomaterials, PLGA nanoparticles are one of the most promising for the development of nanovaccines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adomako M, St-Hilaire S, Zheng Y, Eley J, Marcum RD, Sealey W, Donahower BC, Lapatra S, Sheridan PP (2012) Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [poly(D,L-lactic-co-glycolic acid)] nanoparticles. J Fish Dis 35(3):203–214CrossRef Adomako M, St-Hilaire S, Zheng Y, Eley J, Marcum RD, Sealey W, Donahower BC, Lapatra S, Sheridan PP (2012) Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [poly(D,L-lactic-co-glycolic acid)] nanoparticles. J Fish Dis 35(3):203–214CrossRef
go back to reference Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25(4):471–476CrossRef Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25(4):471–476CrossRef
go back to reference Boyaka PN (2017) Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems. J Immunol 199(1):9–16CrossRef Boyaka PN (2017) Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems. J Immunol 199(1):9–16CrossRef
go back to reference Bussio JI, Molina-Perea C, González-Aramundiz JV (2018) Lower-sized chitosan Nanocapsules for transcutaneous antigen delivery. Nanomaterials (Basel) 26:8(9) Bussio JI, Molina-Perea C, González-Aramundiz JV (2018) Lower-sized chitosan Nanocapsules for transcutaneous antigen delivery. Nanomaterials (Basel) 26:8(9)
go back to reference Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193CrossRef Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193CrossRef
go back to reference Chudina T, Labyntsev A, Manoilov K, Kolybo D, Komisarenko S (2015) Cellobiose-coated poly(lactide-co-glycolide) particles loaded with diphtheria toxoid for per os immunization. Croat Med J 56(2):85–93CrossRef Chudina T, Labyntsev A, Manoilov K, Kolybo D, Komisarenko S (2015) Cellobiose-coated poly(lactide-co-glycolide) particles loaded with diphtheria toxoid for per os immunization. Croat Med J 56(2):85–93CrossRef
go back to reference Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133(2):90–95CrossRef Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133(2):90–95CrossRef
go back to reference Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19(15–16):1940–1950CrossRef Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19(15–16):1940–1950CrossRef
go back to reference Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG (2010) Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 144(2):118–126CrossRef Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG (2010) Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 144(2):118–126CrossRef
go back to reference Delgado A, Lavelle EC, Hartshorne M, Davis SS (1999) PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Vaccine 17(22):2927–2938CrossRef Delgado A, Lavelle EC, Hartshorne M, Davis SS (1999) PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Vaccine 17(22):2927–2938CrossRef
go back to reference Dubey S, Avadhani K, Mutalik S, Sivadasan SM, Maiti B, Paul J, Girisha SK, Venugopal MN, Mutoloki S, Evensen Ø, Karunasagar I, Munang’andu HM (2016) Aeromonas hydrophila OmpW PLGA nanoparticle Oral vaccine shows a dose-dependent protective immunity in Rohu (Labeo rohita). Vaccines (Basel) 4(2):pii: E21CrossRef Dubey S, Avadhani K, Mutalik S, Sivadasan SM, Maiti B, Paul J, Girisha SK, Venugopal MN, Mutoloki S, Evensen Ø, Karunasagar I, Munang’andu HM (2016) Aeromonas hydrophila OmpW PLGA nanoparticle Oral vaccine shows a dose-dependent protective immunity in Rohu (Labeo rohita). Vaccines (Basel) 4(2):pii: E21CrossRef
go back to reference Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jérôme C, Marchand-Brynaert J, Schneider YJ, Préat V (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120(3):195–204CrossRef Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jérôme C, Marchand-Brynaert J, Schneider YJ, Préat V (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120(3):195–204CrossRef
go back to reference Ghotbi Z, Haddadi A, Hamdy S, Hung RW, Samuel J, Lavasanifar A (2011) Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target 19(4):281–292CrossRef Ghotbi Z, Haddadi A, Hamdy S, Hung RW, Samuel J, Lavasanifar A (2011) Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target 19(4):281–292CrossRef
go back to reference Gornati L, Zanoni I, Granucci F (2018) Dendritic cells in the cross hair for the generation of tailored vaccines. Front Immunol 9:1484CrossRef Gornati L, Zanoni I, Granucci F (2018) Dendritic cells in the cross hair for the generation of tailored vaccines. Front Immunol 9:1484CrossRef
go back to reference Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57(2):171–185CrossRef Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57(2):171–185CrossRef
go back to reference Gupta PN, Mahor S, Rawat A, Khatri K, Goyal A, Vyas SP (2006) Lectin anchored stabilized biodegradable nanoparticles for oral immunization 1. Development and in vitro evaluation. Int J Pharm 318(1–2):163–173CrossRef Gupta PN, Mahor S, Rawat A, Khatri K, Goyal A, Vyas SP (2006) Lectin anchored stabilized biodegradable nanoparticles for oral immunization 1. Development and in vitro evaluation. Int J Pharm 318(1–2):163–173CrossRef
go back to reference Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP (2007) M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 15(10):701–713CrossRef Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP (2007) M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 15(10):701–713CrossRef
go back to reference Hayakawa Y, Godfrey DI, Smyth MJ (2004) α-Galactosylceramide: potential immunomodulatory activity and future application [general articles]. Curr Med Chem 11(2):241–252CrossRef Hayakawa Y, Godfrey DI, Smyth MJ (2004) α-Galactosylceramide: potential immunomodulatory activity and future application [general articles]. Curr Med Chem 11(2):241–252CrossRef
go back to reference Ho NI, Huis In’t Veld LGM, Raaijmakers TK, Adema GJ (2018) Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front Immunol 9:2874CrossRef Ho NI, Huis In’t Veld LGM, Raaijmakers TK, Adema GJ (2018) Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front Immunol 9:2874CrossRef
go back to reference Iranpour S, Nejati V, Delirezh N, Biparva P, Shirian S (2016) Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. J Exp Clin Cancer Res 35(1):168CrossRef Iranpour S, Nejati V, Delirezh N, Biparva P, Shirian S (2016) Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. J Exp Clin Cancer Res 35(1):168CrossRef
go back to reference Jahan ST, Sadat SM, Haddadi A (2018) Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine. Int J Nanomedicine 13:367–386CrossRef Jahan ST, Sadat SM, Haddadi A (2018) Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine. Int J Nanomedicine 13:367–386CrossRef
go back to reference Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18(3):352–360CrossRef Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18(3):352–360CrossRef
go back to reference Kaneko K, McDowell A, Ishii Y, Hook S (2017) Characterization and evaluation of stabilized particulate formulations as therapeutic oral vaccines for allergy. J Liposome Res 21:1–28 Kaneko K, McDowell A, Ishii Y, Hook S (2017) Characterization and evaluation of stabilized particulate formulations as therapeutic oral vaccines for allergy. J Liposome Res 21:1–28
go back to reference Kim SY, Doh HJ, Ahn JS, Ha YJ, Jang MH, Chung SI, Park HJ (1999a) Induction of mucosal and systemic immune response by oral immunization with H. pylori lysates encapsulated in poly(D,L-lactide-co-glycolide) microparticles. Vaccine 17(6):607–616CrossRef Kim SY, Doh HJ, Ahn JS, Ha YJ, Jang MH, Chung SI, Park HJ (1999a) Induction of mucosal and systemic immune response by oral immunization with H. pylori lysates encapsulated in poly(D,L-lactide-co-glycolide) microparticles. Vaccine 17(6):607–616CrossRef
go back to reference Kim SY, Doh HJ, Jang MH, Ha YJ, Chung SI, Park HJ (1999b) Oral immunization with helicobacter pylori-loaded poly(D, L-lactide-co-glycolide) nanoparticles. Helicobacter 4(1):33–39CrossRef Kim SY, Doh HJ, Jang MH, Ha YJ, Chung SI, Park HJ (1999b) Oral immunization with helicobacter pylori-loaded poly(D, L-lactide-co-glycolide) nanoparticles. Helicobacter 4(1):33–39CrossRef
go back to reference Liu W, Wen S, Shen M, Shi X (2014) Doxorubicin-loaded poly (lactic-co-glycolic acid) hollow microcapsules for targeted drug delivery to cancer cells. New J Chem 38(8):3917–3924CrossRef Liu W, Wen S, Shen M, Shi X (2014) Doxorubicin-loaded poly (lactic-co-glycolic acid) hollow microcapsules for targeted drug delivery to cancer cells. New J Chem 38(8):3917–3924CrossRef
go back to reference Ma T, Wang L, Yang T, Ma G, Wang S (2014) M-cell targeted polymeric lipid nanoparticles containing a toll-like receptor agonist to boost oral immunity. Int J Pharm 473(1–2):296–303CrossRef Ma T, Wang L, Yang T, Ma G, Wang S (2014) M-cell targeted polymeric lipid nanoparticles containing a toll-like receptor agonist to boost oral immunity. Int J Pharm 473(1–2):296–303CrossRef
go back to reference Ma YP, Ke H, Liang ZL, Ma JY, Hao L, Liu ZX (2017) Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia. Fish Shellfish Immunol 66:345–353CrossRef Ma YP, Ke H, Liang ZL, Ma JY, Hao L, Liu ZX (2017) Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia. Fish Shellfish Immunol 66:345–353CrossRef
go back to reference McConnell EL, Basit AW, Murdan S (2008) Colonic antigen administration induces significantly higher humoral levels of colonic and vaginal IgA, and serum IgG compared to oral administration. Vaccine 26(5):639–646CrossRef McConnell EL, Basit AW, Murdan S (2008) Colonic antigen administration induces significantly higher humoral levels of colonic and vaginal IgA, and serum IgG compared to oral administration. Vaccine 26(5):639–646CrossRef
go back to reference Mishra N, Tiwari S, Vaidya B, Agrawal GP, Vyas SP (2011) Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J Drug Target 19(1):67–78CrossRef Mishra N, Tiwari S, Vaidya B, Agrawal GP, Vyas SP (2011) Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J Drug Target 19(1):67–78CrossRef
go back to reference Nazarian S, Gargari SL, Rasooli I, Hasannia S, Pirooznia N (2014) A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiol Res 169(2–3):205–212CrossRef Nazarian S, Gargari SL, Rasooli I, Hasannia S, Pirooznia N (2014) A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiol Res 169(2–3):205–212CrossRef
go back to reference Niborski V, Li Y, Brennan F, Lane M, Torché AM, Remond M, Bonneau M, Riffault S, Stirling C, Hutchings G, Takamatsu H, Barnett P, Charley B, Schwartz-Cornil I (2006) Efficacy of particle-based DNA delivery for vaccination of sheep against FMDV. Vaccine 24(49–50):7204–7213CrossRef Niborski V, Li Y, Brennan F, Lane M, Torché AM, Remond M, Bonneau M, Riffault S, Stirling C, Hutchings G, Takamatsu H, Barnett P, Charley B, Schwartz-Cornil I (2006) Efficacy of particle-based DNA delivery for vaccination of sheep against FMDV. Vaccine 24(49–50):7204–7213CrossRef
go back to reference Pan L, Zhang Z, Lv J, Zhou P, Hu W, Fang Y, Chen H, Liu X, Shao J, Zhao F, Ding Y, Lin T, Chang H, Zhang J, Zhang Y, Wang Y (2014) Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Int J Nanomedicine 9:5603–5618CrossRef Pan L, Zhang Z, Lv J, Zhou P, Hu W, Fang Y, Chen H, Liu X, Shao J, Zhao F, Ding Y, Lin T, Chang H, Zhang J, Zhang Y, Wang Y (2014) Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Int J Nanomedicine 9:5603–5618CrossRef
go back to reference Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, Kiparissides C, Bernkop-Schnürch A (2011) In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 32(16):4052–4057CrossRef Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, Kiparissides C, Bernkop-Schnürch A (2011) In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 32(16):4052–4057CrossRef
go back to reference Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W (2016) PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother 12(4):1056–1069CrossRef Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W (2016) PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother 12(4):1056–1069CrossRef
go back to reference Tan Z, Liu W, Liu H, Li C, Zhang Y, Meng X, Tang T, Xi T, Xing Y (2017) Oral helicobacter pylori vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection. Eur J Pharm Biopharm 111:33–43CrossRef Tan Z, Liu W, Liu H, Li C, Zhang Y, Meng X, Tang T, Xi T, Xing Y (2017) Oral helicobacter pylori vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection. Eur J Pharm Biopharm 111:33–43CrossRef
go back to reference Wang G, Pan L, Zhang Y, Wang Y, Zhang Z, Lü J, Zhou P, Fang Y, Jiang S (2011) Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. PLoS One 6(11):e27605CrossRef Wang G, Pan L, Zhang Y, Wang Y, Zhang Z, Lü J, Zhou P, Fang Y, Jiang S (2011) Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. PLoS One 6(11):e27605CrossRef
go back to reference Wang Y, Wen Q, Choi S (2016a) FDA’s regulatory science program for generic PLA/PLGA-based drug products. Am Pharm Rev 19(4):5–9 Wang Y, Wen Q, Choi S (2016a) FDA’s regulatory science program for generic PLA/PLGA-based drug products. Am Pharm Rev 19(4):5–9
go back to reference Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L (2016b) Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 6(2):26CrossRef Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L (2016b) Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 6(2):26CrossRef
go back to reference WHO (2013) Global vaccine action plan 2011–2020. World Health Organization WHO (2013) Global vaccine action plan 2011–2020. World Health Organization
go back to reference Xu Y, Kim CS, Saylor DM, Koo D (2017) Polymer degradation and drug delivery in PLGA-based drug-polymer applications: a review of experiments and theories. J Biomed Mater Res B Appl Biomater 105(6):1692–1716CrossRef Xu Y, Kim CS, Saylor DM, Koo D (2017) Polymer degradation and drug delivery in PLGA-based drug-polymer applications: a review of experiments and theories. J Biomed Mater Res B Appl Biomater 105(6):1692–1716CrossRef
go back to reference Zhang L, Zeng Z, Hu C, Bellis SL, Yang W, Su Y, Zhang X, Wu Y (2016) Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials 77:307–319CrossRef Zhang L, Zeng Z, Hu C, Bellis SL, Yang W, Su Y, Zhang X, Wu Y (2016) Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials 77:307–319CrossRef
go back to reference Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z, Waters RC, Kirk J, Eppler B, Klinman DM, Sui Y, Gagnon S, Belyakov IM, Mumper RJ, Berzofsky JA (2012) Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat Med 18(8):1291–1296CrossRef Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z, Waters RC, Kirk J, Eppler B, Klinman DM, Sui Y, Gagnon S, Belyakov IM, Mumper RJ, Berzofsky JA (2012) Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat Med 18(8):1291–1296CrossRef
Metadata
Title
PLGA-Based Mucosal Nanovaccines
Authors
Sergio Rosales-Mendoza
Omar González-Ortega
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-31668-6_4

Premium Partners