Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Neural Computing and Applications 34/2023

19-09-2023 | Original Article

POC-net: pelican optimization-based convolutional neural network for recognizing large pose variation from video

Authors: P. Jayabharathi, A. Suresh

Published in: Neural Computing and Applications | Issue 34/2023

Log in

Abstract

Nowadays, face recognition using video surveillance systems becomes one of the active research topics in security domains. Security plays a significant role in everyday life for secure and sustainable developments of smart cities. The conventional techniques provide efficient recognition results only when the faces are captured with complete face images. However, they suffer to handle large pose variation images extracted from video sequences. Therefore, to deal with this issue, this paper specially designed a multidimensional face recognition model to recognize faces under multiple pose variations and angles. Three face video databases, namely facesurv database, IARPA Janus benchmark database and McGill database, are utilized for experimental evaluation. The videos of these three databases are converted into number of image frames through background subtraction process. From the image frames, the large pose variation images with different angles are identified and selected to process further. The video recorded under dynamic environment conditions diminishes recognition performance, so the image frames are processed through several preprocessing pipelines. The preprocessed images are then fed into the proposed optimal mask region-based convolutional neural network with modified short-term memory (OMRCNN-MBiLSTM) model, which learns the facial patterns present in the images more efficiently. The feature vectors learned by the proposed classifier are matched with the input face database to determine the identity of the person. With the ability to handle multiview and large pose variations, the proposed model accurately recognizes faces. The simulation result manifests the superiority of proposed model over other existing methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mliki H, Dammak S, Fendri E (2020) An improved multi-scale face detection using convolutional neural network. SIViP 14(7):1345–1353 CrossRef Mliki H, Dammak S, Fendri E (2020) An improved multi-scale face detection using convolutional neural network. SIViP 14(7):1345–1353 CrossRef
2.
go back to reference Zhao H, Shi Y, Tong X, Wen J, Ying X, Zha H (2021) G-FAN: graph-based feature aggregation network for video face recognition. In: 2020 25th international conference on pattern recognition (ICPR) IEEE, pp 1672–1678 Zhao H, Shi Y, Tong X, Wen J, Ying X, Zha H (2021) G-FAN: graph-based feature aggregation network for video face recognition. In: 2020 25th international conference on pattern recognition (ICPR) IEEE, pp 1672–1678
3.
go back to reference Loey M, Manogaran G, Taha MHN, Khalifa NEM (2021) A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 167:108288 CrossRef Loey M, Manogaran G, Taha MHN, Khalifa NEM (2021) A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 167:108288 CrossRef
4.
go back to reference Zhang L, Sun L, Yu L, Dong X, Chen J, Cai W, Wang C, Ning X (2021) ARFace: attention-aware and regularization for face recognition with reinforcement learning. IEEE Trans Biom, Behav Identity Sci 4(1):30–42 CrossRef Zhang L, Sun L, Yu L, Dong X, Chen J, Cai W, Wang C, Ning X (2021) ARFace: attention-aware and regularization for face recognition with reinforcement learning. IEEE Trans Biom, Behav Identity Sci 4(1):30–42 CrossRef
5.
go back to reference Jain DK, Zhang Z, Huang K (2020) Multi angle optimal pattern-based deep learning for automatic facial expression recognition. Pattern Recogn Lett 139:157–165 CrossRef Jain DK, Zhang Z, Huang K (2020) Multi angle optimal pattern-based deep learning for automatic facial expression recognition. Pattern Recogn Lett 139:157–165 CrossRef
6.
go back to reference Gao G, Yu Y, Yang M, Chang H, Huang P, Yue D (2020) Cross-resolution face recognition with pose variations via multilayer locality-constrained structural orthogonal procrustes regression. Inf Sci 506:19–36 MathSciNetCrossRef Gao G, Yu Y, Yang M, Chang H, Huang P, Yue D (2020) Cross-resolution face recognition with pose variations via multilayer locality-constrained structural orthogonal procrustes regression. Inf Sci 506:19–36 MathSciNetCrossRef
7.
go back to reference Li B, Lima D (2021) Facial expression recognition via ResNet-50. Int J Cognit Comput Eng 2:57–64 CrossRef Li B, Lima D (2021) Facial expression recognition via ResNet-50. Int J Cognit Comput Eng 2:57–64 CrossRef
8.
go back to reference Ben Fredj H, Bouguezzi S, Souani C (2021) Face recognition in unconstrained environment with CNN. Vis Comput 37(2):217–226 CrossRef Ben Fredj H, Bouguezzi S, Souani C (2021) Face recognition in unconstrained environment with CNN. Vis Comput 37(2):217–226 CrossRef
9.
go back to reference Plichoski GF, Chidambaram C, Parpinelli RS (2021) A face recognition framework based on a pool of techniques and differential evolution. Inf Sci 543:219–241 CrossRef Plichoski GF, Chidambaram C, Parpinelli RS (2021) A face recognition framework based on a pool of techniques and differential evolution. Inf Sci 543:219–241 CrossRef
11.
go back to reference Balasubramanian K, Nalligoundenpalayam Periyasamy A, Kishore R (2023) Modified spider monkey optimization algorithm based feature selection and probabilistic neural network classifier in face recognition. Expert Syst 40:e13088 CrossRef Balasubramanian K, Nalligoundenpalayam Periyasamy A, Kishore R (2023) Modified spider monkey optimization algorithm based feature selection and probabilistic neural network classifier in face recognition. Expert Syst 40:e13088 CrossRef
12.
go back to reference Naseri RAS, Kurnaz A, Farhan HM (2023) Optimized face detector-based intelligent face mask detection model in IoT using deep learning approach. Appl Soft Comput 134:109933 CrossRef Naseri RAS, Kurnaz A, Farhan HM (2023) Optimized face detector-based intelligent face mask detection model in IoT using deep learning approach. Appl Soft Comput 134:109933 CrossRef
13.
go back to reference Zhang Y, Yan L (2023) Face recognition algorithm based on particle swarm optimization and image feature compensation. SoftwareX 22:101305 CrossRef Zhang Y, Yan L (2023) Face recognition algorithm based on particle swarm optimization and image feature compensation. SoftwareX 22:101305 CrossRef
14.
go back to reference Benradi H, Chater A, Lasfar A (2023) A hybrid approach for face recognition using a convolutional neural network combined with feature extraction techniques. IAES Int J Artif Intell 12(2):627 Benradi H, Chater A, Lasfar A (2023) A hybrid approach for face recognition using a convolutional neural network combined with feature extraction techniques. IAES Int J Artif Intell 12(2):627
15.
go back to reference Yu C, Zhang Z, Li H, Sun J, Xu Z (2023) Meta-learning-based adversarial training for deep 3D face recognition on point clouds. Pattern Recogn 134:109065 CrossRef Yu C, Zhang Z, Li H, Sun J, Xu Z (2023) Meta-learning-based adversarial training for deep 3D face recognition on point clouds. Pattern Recogn 134:109065 CrossRef
16.
go back to reference Cheng WC, Hsiao HC, Li LH (2023) Deep learning mask face recognition with annealing mechanism. Appl Sci 13(2):732 CrossRef Cheng WC, Hsiao HC, Li LH (2023) Deep learning mask face recognition with annealing mechanism. Appl Sci 13(2):732 CrossRef
17.
go back to reference Chandrasekhar T, Kumar CS (2023) Neural network optimization-based facial geometric key homomorphic cloud security. Int J Intell Syst Appl Eng 11(1):277–286 Chandrasekhar T, Kumar CS (2023) Neural network optimization-based facial geometric key homomorphic cloud security. Int J Intell Syst Appl Eng 11(1):277–286
18.
go back to reference Bah SM, Ming F (2020) An improved face recognition algorithm and its application in attendance management system. Array 5:100014 CrossRef Bah SM, Ming F (2020) An improved face recognition algorithm and its application in attendance management system. Array 5:100014 CrossRef
19.
go back to reference Ahmed S, Frikha M, Hussein TDH, Rahebi J (2021) Optimum feature selection with particle swarm optimization to face recognition system using Gabor wavelet transform and deep learning. BioMed Res Int 2021:6621540 CrossRef Ahmed S, Frikha M, Hussein TDH, Rahebi J (2021) Optimum feature selection with particle swarm optimization to face recognition system using Gabor wavelet transform and deep learning. BioMed Res Int 2021:6621540 CrossRef
20.
go back to reference Mishra NK, Singh SK (2021) Face recognition using 3d cnns. In: Verma GK, Soni B, Bourennane S, Ramos ACB (eds) Data science. Springer, Berlin, pp 279–293 CrossRef Mishra NK, Singh SK (2021) Face recognition using 3d cnns. In: Verma GK, Soni B, Bourennane S, Ramos ACB (eds) Data science. Springer, Berlin, pp 279–293 CrossRef
21.
go back to reference Shirley CP, Ram Mohan NR, Chitra B (2021) Gravitational search-based optimal deep neural network for occluded face recognition system in videos. Multidimens Syst Signal Process 32(1):189–215 CrossRef Shirley CP, Ram Mohan NR, Chitra B (2021) Gravitational search-based optimal deep neural network for occluded face recognition system in videos. Multidimens Syst Signal Process 32(1):189–215 CrossRef
22.
go back to reference Bahroun S, Abed R, Zagrouba E (2021) KS-FQA: keyframe selection based on face quality assessment for efficient face recognition in video. IET Image Proc 15(1):77–90 CrossRef Bahroun S, Abed R, Zagrouba E (2021) KS-FQA: keyframe selection based on face quality assessment for efficient face recognition in video. IET Image Proc 15(1):77–90 CrossRef
23.
go back to reference Zheng G, Xu Y (2021) Efficient face detection and tracking in video sequences based on deep learning. Inf Sci 568:265–285 MathSciNetCrossRef Zheng G, Xu Y (2021) Efficient face detection and tracking in video sequences based on deep learning. Inf Sci 568:265–285 MathSciNetCrossRef
24.
go back to reference Soni N, Sharma EK, Kapoor A (2021) Novel BSSSO-based deep convolutional neural network for face recognition with multiple disturbing environments. Electronics 10(5):626 CrossRef Soni N, Sharma EK, Kapoor A (2021) Novel BSSSO-based deep convolutional neural network for face recognition with multiple disturbing environments. Electronics 10(5):626 CrossRef
25.
go back to reference Medapati PK, Tejo Murthy PHS, Sridhar KP (2020) LAMSTAR: For IoT-based face recognition system to manage the safety factor in smart cities. Trans Emerg Telecommun Technol 31(12):e3843 CrossRef Medapati PK, Tejo Murthy PHS, Sridhar KP (2020) LAMSTAR: For IoT-based face recognition system to manage the safety factor in smart cities. Trans Emerg Telecommun Technol 31(12):e3843 CrossRef
26.
go back to reference Gupta S, Gupta N, Ghosh S, Singh M, Nagpal S, Vatsa M, Singh R (2019) FaceSurv: a benchmark video dataset for face detection and recognition across spectra and resolutions. In: 2019 14th IEEE international conference on automatic face & gesture recognition IEEE, pp 1–7. Gupta S, Gupta N, Ghosh S, Singh M, Nagpal S, Vatsa M, Singh R (2019) FaceSurv: a benchmark video dataset for face detection and recognition across spectra and resolutions. In: 2019 14th IEEE international conference on automatic face & gesture recognition IEEE, pp 1–7.
27.
go back to reference Klare BF, Klein B, Taborsky E, Blanton A, Cheney J, Allen K, Grother P, Mah A, Jain AK (2015) Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1931–1939. Klare BF, Klein B, Taborsky E, Blanton A, Cheney J, Allen K, Grother P, Mah A, Jain AK (2015) Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1931–1939.
28.
go back to reference Demirkus M, Precup D, Clark JJ, Arbel T (2015) Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos. Comput Vis Image Underst 136:128–145 CrossRef Demirkus M, Precup D, Clark JJ, Arbel T (2015) Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos. Comput Vis Image Underst 136:128–145 CrossRef
29.
go back to reference Alkhalid FF (2020) Online preprocessing of gesture signs using background substructure and edge detection algorithms. Int J Simul Syst SciTechnol 21(2):1–6 Alkhalid FF (2020) Online preprocessing of gesture signs using background substructure and edge detection algorithms. Int J Simul Syst SciTechnol 21(2):1–6
30.
go back to reference Zhou Z, Zhang M, Chen J, Wu X (2020) Detection and classification of multi-magnetic targets using mask-RCNN. IEEE Access 8:187202–187207 CrossRef Zhou Z, Zhang M, Chen J, Wu X (2020) Detection and classification of multi-magnetic targets using mask-RCNN. IEEE Access 8:187202–187207 CrossRef
31.
go back to reference Khan MA, Akram T, Zhang YD, Sharif M (2021) Attributes based skin lesion detection and recognition: a mask RCNN and transfer learning-based deep learning framework. Pattern Recogn Lett 143:58–66 CrossRef Khan MA, Akram T, Zhang YD, Sharif M (2021) Attributes based skin lesion detection and recognition: a mask RCNN and transfer learning-based deep learning framework. Pattern Recogn Lett 143:58–66 CrossRef
32.
go back to reference Yu D, Wang L, Chen X, Chen J (2021) Using BiLSTM with attention mechanism to automatically detect self-admitted technical debt. Front Comp Sci 15(4):1–12 Yu D, Wang L, Chen X, Chen J (2021) Using BiLSTM with attention mechanism to automatically detect self-admitted technical debt. Front Comp Sci 15(4):1–12
33.
go back to reference Enriquez EAT, Mendoza RG, Velasco ACT (2022) Philippine eagle optimization algorithm. IEEE Access 10:29089–29120 CrossRef Enriquez EAT, Mendoza RG, Velasco ACT (2022) Philippine eagle optimization algorithm. IEEE Access 10:29089–29120 CrossRef
Metadata
Title
POC-net: pelican optimization-based convolutional neural network for recognizing large pose variation from video
Authors
P. Jayabharathi
A. Suresh
Publication date
19-09-2023
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 34/2023
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-08953-8

Other articles of this Issue 34/2023

Neural Computing and Applications 34/2023 Go to the issue

Premium Partner