2021 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
This manuscript is essentially a collection of lecture notes which were given by the first author at the Summer School Wisła–2019, Poland and written down by the second author. As the title suggests, the material covered here includes the Poisson and symplectic structures (Poisson manifolds, Poisson bi-vectors, and Poisson brackets), group actions and orbits (infinitesimal action, stabilizers, and adjoint representations), moment maps, Poisson and Hamiltonian actions. Finally, the phase space reduction is also discussed. The very last section introduces the Poisson–Lie structures along with some related notions. This text represents a brief review of a well-known material citing standard references for more details. The exposition is concise, but pedagogical. The authors believe that it will be useful as an introductory exposition for students interested in this specific topic.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1
Here we mean that the bi-vector
π is non-degenerate, i.e.
π is invertible when it is seen as a banal matrix.
1.
go back to reference Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd ed. Addison-Wesley Pub. Co., Redwood City, CA (1987) Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd ed. Addison-Wesley Pub. Co., Redwood City, CA (1987)
2.
go back to reference Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd ed. Springer, New York (1997) Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd ed. Springer, New York (1997)
3.
go back to reference Drinfel’d, V.G.: Hamiltonian structures on Lie groups, Lie algebras and the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268, 285–287 (1983) Drinfel’d, V.G.: Hamiltonian structures on Lie groups, Lie algebras and the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR
268, 285–287 (1983)
4.
go back to reference Drinfel’d, V.G.: Quantum groups. J. Math. Sci. 41, 898–915 (1988) CrossRef Drinfel’d, V.G.: Quantum groups. J. Math. Sci.
41, 898–915 (1988)
CrossRef
5.
go back to reference Fernandes, R.L.: Poisson vs. Symplectic Geometry. CIM Bulletin 20, 15–19 (2006) Fernandes, R.L.: Poisson vs. Symplectic Geometry. CIM Bulletin
20, 15–19 (2006)
6.
go back to reference Kosmann-Schwarzbach, Y.: Lie bialgebras, Poisson Lie groups and dressing transformations. In: Kosmann-Schwarzbach, Y., Grammaticos, B., Tamizhmani, K.M. (eds.) Integrability of Nonlinear Systems, pp. 104–170. Springer, Berlin, Heidelberg (1997) CrossRef Kosmann-Schwarzbach, Y.: Lie bialgebras, Poisson Lie groups and dressing transformations. In: Kosmann-Schwarzbach, Y., Grammaticos, B., Tamizhmani, K.M. (eds.) Integrability of Nonlinear Systems, pp. 104–170. Springer, Berlin, Heidelberg (1997)
CrossRef
7.
go back to reference Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom. 12, 253–300 (1977) CrossRef Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom.
12, 253–300 (1977)
CrossRef
8.
go back to reference Lu, J.-H., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Diff. Geom. 31, 501–526 (1990) MathSciNetCrossRef Lu, J.-H., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Diff. Geom.
31, 501–526 (1990)
MathSciNetCrossRef
9.
go back to reference Semenov-Tian-Shansky, M.A.: Dressing Transformations and Poisson Group Actions. Publ. RIMS, Kyoto Univ. 21, 1237–1260 (1985) Semenov-Tian-Shansky, M.A.: Dressing Transformations and Poisson Group Actions. Publ. RIMS, Kyoto Univ.
21, 1237–1260 (1985)
10.
go back to reference Souriau, J.-M.: Structure of Dynamical Systems: a Symplectic View of Physics. Birkäuser, Boston, MA (1997) Souriau, J.-M.: Structure of Dynamical Systems: a Symplectic View of Physics. Birkäuser, Boston, MA (1997)
11.
go back to reference Tortorella, A.G.: A course on symplectic and contact geometry: an introduction to the Hamiltonian formalism. Tech. rep., Diffiety Institute, Lizzano-in-Belvedere (2019) https://drive.google.com/file/d/1A79IhEUq1ESDcUODl4-USti58OdH61HW Tortorella, A.G.: A course on symplectic and contact geometry: an introduction to the Hamiltonian formalism. Tech. rep., Diffiety Institute, Lizzano-in-Belvedere (2019)
https://drive.google.com/file/d/1A79IhEUq1ESDcUODl4-USti58OdH61HW
12.
go back to reference Vinogradov, A.M., Kupershmidt, B.A.: The structures of Hamiltonian mechanics. Rus. Math. Surv. 32, 177–243 (1977) MathSciNetCrossRef Vinogradov, A.M., Kupershmidt, B.A.: The structures of Hamiltonian mechanics. Rus. Math. Surv.
32, 177–243 (1977)
MathSciNetCrossRef
13.
go back to reference Weinstein, A.: The local structure of Poisson manifolds. J. Diff. Geom. 18, 523–557 (1983) MathSciNetCrossRef Weinstein, A.: The local structure of Poisson manifolds. J. Diff. Geom.
18, 523–557 (1983)
MathSciNetCrossRef
14.
go back to reference Weinstein, A.: Poisson geometry. Differential Geometry and its Applications 9, 213–238 (1998) MathSciNetCrossRef Weinstein, A.: Poisson geometry. Differential Geometry and its Applications
9, 213–238 (1998)
MathSciNetCrossRef
- Title
- Poisson and Symplectic Structures, Hamiltonian Action, Momentum and Reduction
- DOI
- https://doi.org/10.1007/978-3-030-63253-3_1
- Authors:
-
Vladimir Roubtsov
Denys Dutykh
- Publisher
- Springer International Publishing
- Sequence number
- 1
- Chapter number
- Chapter 1