Skip to main content
Top
Published in: Journal of Materials Science 1/2019

31-08-2018 | Composites

Poly(ε-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement and morphology: the role of nanocrystal pre-dispersion

Authors: Luiz G. L. Germiniani, Laura C. E. da Silva, Tomás S. Plivelic, Maria C. Gonçalves

Published in: Journal of Materials Science | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose nanocrystal (CNC) incorporation in polymeric matrices is an environmentally friendly approach to mechanical reinforcement. In general, significant mechanical reinforcement can only be achieved by means of good CNC dispersion at random orientation. These primary characteristics are even more relevant for the preparation of nanocomposites based on hydrophobic matrices, such as poly(ε-caprolactone) (PCL). A straightforward approach to improve CNC dispersion in hydrophobic matrices is their surface modification. However, this extra step is usually complex and often impairs particle–particle interactions, which are also key to mechanical reinforcement. In this work, poly(ε-caprolactone)/neat cellulose nanocrystal nanocomposites were prepared by a specific procedure that combined solvent exchange and solvent casting methodologies, avoiding the use of any additives or chemical modification. These nanocomposites were investigated in terms of the CNC percolation network formation and its effect on the overall mechanical properties. The results showed that significant mechanical reinforcement was obtained, reaching a 155% Young’s modulus increase at 25 wt% CNC content. TEM showed a percolated network in the PCL/CNC25 nanocomposite. In terms of morphology and nanostructure, increasing CNC concentration also promoted a reduction in PCL spherulite size and lamellar thickness. These results pointed out to CNC preferential localization in the interfibrillar region. In conclusion, the solvent exchange methodology presented herein led to mechanically reinforced PCL/CNC nanocomposites with small crystalline domains intertwined with a percolated CNC network.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128CrossRef Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128CrossRef
2.
go back to reference Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulose whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulose whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
3.
go back to reference Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432CrossRef
4.
go back to reference Hassan ML, Bras J, Hassan EA, Fadel SM, Dufresne A (2012) Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. J Appl Polym Sci 125:E10–E19CrossRef Hassan ML, Bras J, Hassan EA, Fadel SM, Dufresne A (2012) Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. J Appl Polym Sci 125:E10–E19CrossRef
5.
go back to reference Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010CrossRef Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010CrossRef
6.
go back to reference Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRef
7.
go back to reference de Oliveira Taipina M, Ferrarezi MMF, Yoshida IVP, Gonçalves MDC (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20:217–226CrossRef de Oliveira Taipina M, Ferrarezi MMF, Yoshida IVP, Gonçalves MDC (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20:217–226CrossRef
9.
go back to reference Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRef Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRef
10.
go back to reference Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRef Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRef
11.
go back to reference Mariano M, Pilate F, De Oliveira FB, Khelifa F, Dubois P, Raquez JM, Dufresne A (2017) Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants. ACS Omega 2:2678–2688CrossRef Mariano M, Pilate F, De Oliveira FB, Khelifa F, Dubois P, Raquez JM, Dufresne A (2017) Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants. ACS Omega 2:2678–2688CrossRef
12.
go back to reference Meesorn W, Shirole A, Vanhecke D, De Espinosa LM, Weder C (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374CrossRef Meesorn W, Shirole A, Vanhecke D, De Espinosa LM, Weder C (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374CrossRef
13.
go back to reference Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232CrossRef Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232CrossRef
14.
go back to reference Dufresne A (2008) Polysaccharide nanocrystal reinforced nanocomposites. Can J Chem 86:484–494CrossRef Dufresne A (2008) Polysaccharide nanocrystal reinforced nanocomposites. Can J Chem 86:484–494CrossRef
15.
go back to reference Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18CrossRef Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18CrossRef
16.
go back to reference Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef
17.
go back to reference Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739CrossRef Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739CrossRef
18.
go back to reference Fralick BS, Gatzke EP, Baxter SC (2012) Three-dimensional evolution of mechanical percolation in nanocomposites with random microstructures. Prob Eng. Mech. 30:1–8CrossRef Fralick BS, Gatzke EP, Baxter SC (2012) Three-dimensional evolution of mechanical percolation in nanocomposites with random microstructures. Prob Eng. Mech. 30:1–8CrossRef
19.
go back to reference Loos MR, Manas-Zloczower I (2013) Micromechanical models for carbon nanotube and cellulose nanowhisker reinforced composites. Polym Eng Sci 53:882–887CrossRef Loos MR, Manas-Zloczower I (2013) Micromechanical models for carbon nanotube and cellulose nanowhisker reinforced composites. Polym Eng Sci 53:882–887CrossRef
20.
go back to reference Favier V, Dendievel R, Canova G, Cavaille JY, Gilormini P (1997) Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater 45:1557–1565CrossRef Favier V, Dendievel R, Canova G, Cavaille JY, Gilormini P (1997) Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater 45:1557–1565CrossRef
21.
go back to reference Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717CrossRef Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717CrossRef
22.
go back to reference Wang W, Liu D, Lu L, Chen H, Gong T, Lv J, Zhou S (2016) The improvement of the shape memory function of poly(ε-caprolactone)/nano-crystalline cellulose nanocomposites via recrystallization under a high-pressure environment. J Mater Chem A 4:5984–5992CrossRef Wang W, Liu D, Lu L, Chen H, Gong T, Lv J, Zhou S (2016) The improvement of the shape memory function of poly(ε-caprolactone)/nano-crystalline cellulose nanocomposites via recrystallization under a high-pressure environment. J Mater Chem A 4:5984–5992CrossRef
23.
go back to reference Lv Q, Xu C, Wu D, Wang Z, Lan R, Wu L (2017) The role of nanocrystalline cellulose during crystallization of poly(ε-caprolactone) composites: nucleation agent or not? Compos Part A Appl Sci Manuf 92:17–26CrossRef Lv Q, Xu C, Wu D, Wang Z, Lan R, Wu L (2017) The role of nanocrystalline cellulose during crystallization of poly(ε-caprolactone) composites: nucleation agent or not? Compos Part A Appl Sci Manuf 92:17–26CrossRef
24.
go back to reference Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie M-P (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47:2216–2227CrossRef Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie M-P (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47:2216–2227CrossRef
25.
go back to reference Siqueira G, Mathew AP, Oksman K (2011) Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Compos Sci Technol 71:1886–1892CrossRef Siqueira G, Mathew AP, Oksman K (2011) Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Compos Sci Technol 71:1886–1892CrossRef
26.
go back to reference Xu C, Chen J, Wu D, Chen Y, Lv Q, Wang M (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study. Carbohydr Polym 146:58–66CrossRef Xu C, Chen J, Wu D, Chen Y, Lv Q, Wang M (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study. Carbohydr Polym 146:58–66CrossRef
27.
go back to reference Hammersley AP, Svensson SO, Thompson A, Graafsma H, Kvick E, Moy JP (1995) Calibration and correction of distortions in two-dimensional detector systemsa). Rev Sci Instrument 66:2729–2733CrossRef Hammersley AP, Svensson SO, Thompson A, Graafsma H, Kvick E, Moy JP (1995) Calibration and correction of distortions in two-dimensional detector systemsa). Rev Sci Instrument 66:2729–2733CrossRef
28.
go back to reference Plivelic S, Cassu SN, do Carmo Gonçalves M, Torriani IL (2007) Structure and morphology of poly(ε-caprolactone)/chlorinated polyethylene (PCL/PECl) blends investigated by DSC, simultaneous SAXS/WAXD, and elemental mapping by ESI-TEM. Macromolecules 40:253–264CrossRef Plivelic S, Cassu SN, do Carmo Gonçalves M, Torriani IL (2007) Structure and morphology of poly(ε-caprolactone)/chlorinated polyethylene (PCL/PECl) blends investigated by DSC, simultaneous SAXS/WAXD, and elemental mapping by ESI-TEM. Macromolecules 40:253–264CrossRef
29.
go back to reference Wurm A, Lellinger D, Minakov AA, Skipa T, Pötschke P, Nicula R, Alig I, Schick C (2014) Crystallization of poly(ε-caprolactone)/MWCNT composites: a combined SAXS/WAXS, electrical and thermal conductivity study. Polymer 55:2220–2232CrossRef Wurm A, Lellinger D, Minakov AA, Skipa T, Pötschke P, Nicula R, Alig I, Schick C (2014) Crystallization of poly(ε-caprolactone)/MWCNT composites: a combined SAXS/WAXS, electrical and thermal conductivity study. Polymer 55:2220–2232CrossRef
30.
go back to reference Strobl GR, Schneider M (1980) Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Polym Phys Ed 18:1343–1359CrossRef Strobl GR, Schneider M (1980) Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Polym Phys Ed 18:1343–1359CrossRef
31.
go back to reference Rabiej S, Rabiej M (2011) Determination of the parameters of lamellar structure of semicrystalline polymers using a computer program SAXSDAT. Polimery 56:662–670 Rabiej S, Rabiej M (2011) Determination of the parameters of lamellar structure of semicrystalline polymers using a computer program SAXSDAT. Polimery 56:662–670
32.
go back to reference Tsuji H, Ikada Y (1998) Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly (ε-caprolactone) in phosphate-buffered solution. J Appl Polym Sci 67:405–415CrossRef Tsuji H, Ikada Y (1998) Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly (ε-caprolactone) in phosphate-buffered solution. J Appl Polym Sci 67:405–415CrossRef
33.
go back to reference Crescenzi V, Manzini G, Calzolari G, Borri C (1972) Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463CrossRef Crescenzi V, Manzini G, Calzolari G, Borri C (1972) Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463CrossRef
34.
go back to reference Girouard N, Schueneman GT, Shofner ML, Meredith JC (2015) Exploiting colloidal interfaces to increase dispersion, performance, and pot-life in cellulose nanocrystal/waterborne epoxy composites. Polymer 68:111–121CrossRef Girouard N, Schueneman GT, Shofner ML, Meredith JC (2015) Exploiting colloidal interfaces to increase dispersion, performance, and pot-life in cellulose nanocrystal/waterborne epoxy composites. Polymer 68:111–121CrossRef
35.
go back to reference Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223CrossRef Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223CrossRef
36.
go back to reference Hoeng F, Denneulin A, Neuman C, Bras J (2015) Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J. Nanoparticle Res 17:244CrossRef Hoeng F, Denneulin A, Neuman C, Bras J (2015) Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J. Nanoparticle Res 17:244CrossRef
37.
go back to reference Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, New York Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, New York
38.
go back to reference Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
39.
go back to reference Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393CrossRef
40.
go back to reference Bower DI (2002) An introduction to polymer physics, 1st edn. Cambridge University Press, CambridgeCrossRef Bower DI (2002) An introduction to polymer physics, 1st edn. Cambridge University Press, CambridgeCrossRef
41.
go back to reference Koleske JV, Lundberg RD (1969) Lactone polymers. I. Glass transition temperature of poly-ε-caprolactone by means of compatible polymer mixtures. J Polym Sci Part A 7:795–807CrossRef Koleske JV, Lundberg RD (1969) Lactone polymers. I. Glass transition temperature of poly-ε-caprolactone by means of compatible polymer mixtures. J Polym Sci Part A 7:795–807CrossRef
42.
go back to reference Shishehbor M, Dri FL, Moon RJ, Zavattieri PD (2018) A continuum-based structural modeling approach for cellulose nanocrystals (CNCs). J Mech Phys Solids 111:308–332CrossRef Shishehbor M, Dri FL, Moon RJ, Zavattieri PD (2018) A continuum-based structural modeling approach for cellulose nanocrystals (CNCs). J Mech Phys Solids 111:308–332CrossRef
43.
go back to reference Takayanagi M, Uemura S, Minami S (1964) Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci Part C Polym Symp 5:113–122CrossRef Takayanagi M, Uemura S, Minami S (1964) Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci Part C Polym Symp 5:113–122CrossRef
44.
go back to reference Ouali N, Cavaille JY, Perez J (1991) Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast Rubber Compos Process Appl 16:55–60 Ouali N, Cavaille JY, Perez J (1991) Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast Rubber Compos Process Appl 16:55–60
45.
go back to reference Sapkota J, Martinez Garcia JC, Lattuada M (2017) Reinterpretation of the mechanical reinforcement of polymer nanocomposites reinforced with cellulose nanorods. J Appl Polym Sci 134:45354CrossRef Sapkota J, Martinez Garcia JC, Lattuada M (2017) Reinterpretation of the mechanical reinforcement of polymer nanocomposites reinforced with cellulose nanorods. J Appl Polym Sci 134:45354CrossRef
46.
go back to reference Stauffer D, Aharony A (1994) Introduction to Percolation theory, 2nd edn. Taylor & Francis, London Stauffer D, Aharony A (1994) Introduction to Percolation theory, 2nd edn. Taylor & Francis, London
47.
go back to reference De Gennes PG (1979) Scaling concepts in polymer physics, 1st edn. Cornell University Press, Ithaca De Gennes PG (1979) Scaling concepts in polymer physics, 1st edn. Cornell University Press, Ithaca
48.
go back to reference Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488CrossRef Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488CrossRef
49.
go back to reference Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526CrossRef Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526CrossRef
50.
go back to reference Debier D, Jonas AM, Legras R (1998) Blends of polycarbonate and acrylic polymers: crystallization of polycarbonate. J Polym Sci Part B Polym Phys 36:2197–2210CrossRef Debier D, Jonas AM, Legras R (1998) Blends of polycarbonate and acrylic polymers: crystallization of polycarbonate. J Polym Sci Part B Polym Phys 36:2197–2210CrossRef
Metadata
Title
Poly(ε-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement and morphology: the role of nanocrystal pre-dispersion
Authors
Luiz G. L. Germiniani
Laura C. E. da Silva
Tomás S. Plivelic
Maria C. Gonçalves
Publication date
31-08-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2860-9

Other articles of this Issue 1/2019

Journal of Materials Science 1/2019 Go to the issue

Premium Partners