Skip to main content
Top
Published in:

01-05-2019 | ORIGINAL PAPER

Polyamide 6/reduced graphene oxide nano-composites prepared via reactive melt processing: formation of crystalline/network structure and electrically conductive properties

Authors: Meng Xiang, Chengjie Li, Lin Ye

Published in: Journal of Polymer Research | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, polyamide 6 (PA6)/reduced graphene oxide (RGO)- toluene-2,4-diisocyanate (TDI) composites were fabricated by reactive melt processing, and effect of formation of crystalline/network structure on electrically conductive properties of the composites was studied. The molecular bridge effect of exfoliated RGO-TDI resulted in the homogeneous dispersion of RGO in PA6 matrix. Crystallization analysis shows that RGO facilitated the crystallization of PA6 matrix mainly via accelerating the generation of crystal nucleus, reaching maximum of Xc and minimum of crystal grain size upon RGO level of 1.66 vol.%, which confirmed the formation of most perfect crystalline structure. According to the dynamic rheological analysis, both frequency-independence of G’ and sharply reduce phase angle at low-frequency region with RGO loading level of 1.66 vol.% indicate the transition from liquid-like to solid-like rheological behavior, where terminal to non-terminal transition as well as Cole-Cole arc and rapidly increasing entanglement density confirm the formation of percolation network structure with RGO as a crosslinking center. Corresponding to the analysis above, the electrical conductivity of the nano-composites increased rapidly to the equilibrium value, resulting from the formation of perfect conductive network at RGO loading level of 1.66 vol.%, which was confirmed by TEM analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Wang W, Meng L, Huang Y (2014) Hydrolytic degradation of monomer casting nylon in subcritical water. Polym Degrad Stab 110:312–317CrossRef Wang W, Meng L, Huang Y (2014) Hydrolytic degradation of monomer casting nylon in subcritical water. Polym Degrad Stab 110:312–317CrossRef
3.
go back to reference Krupa I, Miková G, Novák I, Janigová I, Nógellová Z, Lednický F, Prokeš J (2007) Electrically conductive composites of polyethylene filled with polyamide particles coated with silver. Eur Polym J 43:2401–2413CrossRef Krupa I, Miková G, Novák I, Janigová I, Nógellová Z, Lednický F, Prokeš J (2007) Electrically conductive composites of polyethylene filled with polyamide particles coated with silver. Eur Polym J 43:2401–2413CrossRef
4.
go back to reference Hochberg A, Versieck J (2001) Shielding for EMI and antistatic plastic resins with stainless steel fibres. Plastics Additives & Compounding 3:24–28CrossRef Hochberg A, Versieck J (2001) Shielding for EMI and antistatic plastic resins with stainless steel fibres. Plastics Additives & Compounding 3:24–28CrossRef
5.
go back to reference Chodak I, Omastova M, Pionteck J (2001) Relation between electrical and mechanical properties of conducting polymer composites. J Appl Polym Sci 82:1903–1906CrossRef Chodak I, Omastova M, Pionteck J (2001) Relation between electrical and mechanical properties of conducting polymer composites. J Appl Polym Sci 82:1903–1906CrossRef
6.
7.
go back to reference Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51CrossRef Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51CrossRef
8.
go back to reference Zhang Y, Heo Y-J, Son Y-R, In I, An K-H, Kim B-J, Park S-J (2019) Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460CrossRef Zhang Y, Heo Y-J, Son Y-R, In I, An K-H, Kim B-J, Park S-J (2019) Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460CrossRef
9.
go back to reference Hu Y, Liu X, Tian L, Zhao T, Wang H, Liang X, Zhou F, Zhu P, Li G, Sun R, Wong C-P (2018) Multidimensional Ternary Hybrids with Synergistically Enhanced Electrical Performance for Conductive Nanocomposites and Prosthetic Electronic Skin. ACS Appl Mater Interfaces 10:38493–38505CrossRef Hu Y, Liu X, Tian L, Zhao T, Wang H, Liang X, Zhou F, Zhu P, Li G, Sun R, Wong C-P (2018) Multidimensional Ternary Hybrids with Synergistically Enhanced Electrical Performance for Conductive Nanocomposites and Prosthetic Electronic Skin. ACS Appl Mater Interfaces 10:38493–38505CrossRef
10.
go back to reference Yang H, Yao X, Yuan L, Gong L, Liu Y (2019) Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 11:578–586CrossRef Yang H, Yao X, Yuan L, Gong L, Liu Y (2019) Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 11:578–586CrossRef
11.
go back to reference Das SK (2018) Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries. Angew Chem Int Ed 57:16606–16617CrossRef Das SK (2018) Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries. Angew Chem Int Ed 57:16606–16617CrossRef
12.
go back to reference Gao B, Zhang R, He M, Sun L, Wang C, Liu L, Zhao L, Cui H, Cao A (2016) Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos A: Appl Sci Manuf 90:433–440CrossRef Gao B, Zhang R, He M, Sun L, Wang C, Liu L, Zhao L, Cui H, Cao A (2016) Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos A: Appl Sci Manuf 90:433–440CrossRef
13.
go back to reference Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 141:467–480CrossRef Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 141:467–480CrossRef
14.
go back to reference Du N, Zhao C-y, Chen Q, Wu G, Lu R (2010) Preparation and characterization of nylon 6/graphite composite. Mater Chem Phys 120:167–171CrossRef Du N, Zhao C-y, Chen Q, Wu G, Lu R (2010) Preparation and characterization of nylon 6/graphite composite. Mater Chem Phys 120:167–171CrossRef
15.
go back to reference O’Neill A, Bakirtzis D, Dixon D (2014) Polyamide 6/Graphene composites: The effect of in situ polymerisation on the structure and properties of graphene oxide and reduced graphene oxide. Eur Polym J 59:353–362CrossRef O’Neill A, Bakirtzis D, Dixon D (2014) Polyamide 6/Graphene composites: The effect of in situ polymerisation on the structure and properties of graphene oxide and reduced graphene oxide. Eur Polym J 59:353–362CrossRef
16.
go back to reference Bouhfid R, Arrakhiz FZ, Qaiss A (2016) Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide 6/acrylonitrile-butadiene-styrene blends. Polym Compos 37:998–1006CrossRef Bouhfid R, Arrakhiz FZ, Qaiss A (2016) Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide 6/acrylonitrile-butadiene-styrene blends. Polym Compos 37:998–1006CrossRef
17.
go back to reference Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromol Rapid Commun 30:316–327CrossRef Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromol Rapid Commun 30:316–327CrossRef
18.
go back to reference Lv Q, Wu D, Qiu Y, Chen J, Yao X, Ding K, Wei N (2015) Crystallization of Poly(ϵ-caprolactone) composites with graphite nanoplatelets: Relations between nucleation and platelet thickness. Thermochim Acta 612:25–33CrossRef Lv Q, Wu D, Qiu Y, Chen J, Yao X, Ding K, Wei N (2015) Crystallization of Poly(ϵ-caprolactone) composites with graphite nanoplatelets: Relations between nucleation and platelet thickness. Thermochim Acta 612:25–33CrossRef
19.
go back to reference Xiang M, Li C, Ye L (2018) Reactive melt processing of polyamide 6/reduced graphene oxide nano-composites and its electrically conductive behavior. J Ind Eng Chem 62:84–95CrossRef Xiang M, Li C, Ye L (2018) Reactive melt processing of polyamide 6/reduced graphene oxide nano-composites and its electrically conductive behavior. J Ind Eng Chem 62:84–95CrossRef
20.
go back to reference Carella JM, Graessley WW, Fetters LJ (1984) Effects of chain microstructure on the viscoelastic properties of linear polymer melts: polybutadienes and hydrogenated polybutadienes. Macromolecules 17:2775–2786CrossRef Carella JM, Graessley WW, Fetters LJ (1984) Effects of chain microstructure on the viscoelastic properties of linear polymer melts: polybutadienes and hydrogenated polybutadienes. Macromolecules 17:2775–2786CrossRef
21.
go back to reference Katoh Y, Okamoto M (2009) Crystallization controlled by layered silicates in nylon 6–clay nano-composite. Polymer 50:4718–4726CrossRef Katoh Y, Okamoto M (2009) Crystallization controlled by layered silicates in nylon 6–clay nano-composite. Polymer 50:4718–4726CrossRef
22.
go back to reference Guan L-Z, Wan Y-J, Gong L-X, Yan D, Tang L-C, Wu L-B, Jiang J-X, Lai G-Q (2014) Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J Mater Chem A 2:15058CrossRef Guan L-Z, Wan Y-J, Gong L-X, Yan D, Tang L-C, Wu L-B, Jiang J-X, Lai G-Q (2014) Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J Mater Chem A 2:15058CrossRef
23.
go back to reference Tang G, Jiang Z-G, Li X, Zhang H-B, Hong S, Yu Z-Z (2014) Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Compos Part B 67:564–570CrossRef Tang G, Jiang Z-G, Li X, Zhang H-B, Hong S, Yu Z-Z (2014) Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Compos Part B 67:564–570CrossRef
24.
go back to reference Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci 28:285–301CrossRef Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci 28:285–301CrossRef
25.
go back to reference Lorenzo A, Müller A (2008) Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci B Polym Phys 46:1478–1487CrossRef Lorenzo A, Müller A (2008) Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci B Polym Phys 46:1478–1487CrossRef
26.
go back to reference Sabino M, Feijoo J, Muller A (2000) Crystallisation and morphology of poly(p-dioxanone). Macromol Chem Phys 201:2687–2698CrossRef Sabino M, Feijoo J, Muller A (2000) Crystallisation and morphology of poly(p-dioxanone). Macromol Chem Phys 201:2687–2698CrossRef
27.
go back to reference Müller AJ, Albuerne J, Marquez L, Raquez J-M, Degée P, Dubois P, Hobbs J, Hamley IW (2005) Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discuss 128:231–252CrossRef Müller AJ, Albuerne J, Marquez L, Raquez J-M, Degée P, Dubois P, Hobbs J, Hamley IW (2005) Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discuss 128:231–252CrossRef
28.
go back to reference Gurland J (1966). Trans Met Soc AIME 236:642 Gurland J (1966). Trans Met Soc AIME 236:642
29.
go back to reference J. D. Hoffman, G. T. Davis, and J. I. Lauritzen Jr (1976) In "Treatise on solid state chemistry", pp. 497, Springer J. D. Hoffman, G. T. Davis, and J. I. Lauritzen Jr (1976) In "Treatise on solid state chemistry", pp. 497, Springer
30.
go back to reference Bo Y, Zhaoyi H, Lu L, Xingyue S, Zengheng H (2018). J Polym Res 26(9) Bo Y, Zhaoyi H, Lu L, Xingyue S, Zengheng H (2018). J Polym Res 26(9)
31.
go back to reference Xu J-Z, Liang Y-Y, Huang H-D, Zhong G-J, Lei J, Chen C, Li Z-M (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res 19:9975CrossRef Xu J-Z, Liang Y-Y, Huang H-D, Zhong G-J, Lei J, Chen C, Li Z-M (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res 19:9975CrossRef
32.
go back to reference Kim CI, Oh SM, Oh KM, Gansukh E, Lee H-i, Jeong HM (2014) Graphenes for low percolation threshold in electroconductive nylon 6 composites. Polym Int 63:1003–1010CrossRef Kim CI, Oh SM, Oh KM, Gansukh E, Lee H-i, Jeong HM (2014) Graphenes for low percolation threshold in electroconductive nylon 6 composites. Polym Int 63:1003–1010CrossRef
33.
go back to reference Ramesh C, Gowd EB (2001) High-Temperature X-ray Diffraction Studies on the Crystalline Transitions in the α- and γ-Forms of Nylon-6. Macromolecules 34:3308–3313CrossRef Ramesh C, Gowd EB (2001) High-Temperature X-ray Diffraction Studies on the Crystalline Transitions in the α- and γ-Forms of Nylon-6. Macromolecules 34:3308–3313CrossRef
34.
go back to reference Wu C-M, Cheong S-S, Chang T-H (2016) Rheological properties of graphene/nylon 6 nanocomposites prepared by masterbatch melt mixing. J Polym Res 23:242CrossRef Wu C-M, Cheong S-S, Chang T-H (2016) Rheological properties of graphene/nylon 6 nanocomposites prepared by masterbatch melt mixing. J Polym Res 23:242CrossRef
35.
go back to reference Filippone G, Netti P, Acierno D (2007) Microstructural evolutions of LDPE/PA6 blends by rheological and rheo-optical analyses: Influence of flow and compatibilizer on break-up and coalescence processes. Polymer 48:564–573CrossRef Filippone G, Netti P, Acierno D (2007) Microstructural evolutions of LDPE/PA6 blends by rheological and rheo-optical analyses: Influence of flow and compatibilizer on break-up and coalescence processes. Polymer 48:564–573CrossRef
36.
go back to reference He Z, Zhang B, Zhang H-B, Zhi X, Hu Q, Gui C-X, Yu Z-Z (2014) Improved rheological and electrical properties of graphene/polystyrene nanocomposites modified with styrene maleic anhydride copolymer. Compos Sci Technol 102:176–182CrossRef He Z, Zhang B, Zhang H-B, Zhi X, Hu Q, Gui C-X, Yu Z-Z (2014) Improved rheological and electrical properties of graphene/polystyrene nanocomposites modified with styrene maleic anhydride copolymer. Compos Sci Technol 102:176–182CrossRef
37.
go back to reference Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ɛ-caprolactone) composites. J Polym Sci B Polym Phys 45:3137–3147CrossRef Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ɛ-caprolactone) composites. J Polym Sci B Polym Phys 45:3137–3147CrossRef
38.
go back to reference Wu D, Lv Q, Feng S, Chen J, Chen Y, Qiu Y, Yao X (2015) Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon 95:380–387CrossRef Wu D, Lv Q, Feng S, Chen J, Chen Y, Qiu Y, Yao X (2015) Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon 95:380–387CrossRef
39.
go back to reference Ding K, Wei N, Zhou Y, Wang Y, Wu D, Liu H, Yu H, Zhou C, Chen J, Chen C (2016) Viscoelastic behavior and model simulations of poly(butylene adipate-co-terephthalate) biocomposites with carbon nanotubes: Hierarchical structures and relaxation. J Compos Mater 50:1805–1816CrossRef Ding K, Wei N, Zhou Y, Wang Y, Wu D, Liu H, Yu H, Zhou C, Chen J, Chen C (2016) Viscoelastic behavior and model simulations of poly(butylene adipate-co-terephthalate) biocomposites with carbon nanotubes: Hierarchical structures and relaxation. J Compos Mater 50:1805–1816CrossRef
40.
go back to reference Wang Y, Cheng Y, Chen J, Wu D, Qiu Y, Yao X, Zhou Y, Chen C (2015) Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer 67:216–226CrossRef Wang Y, Cheng Y, Chen J, Wu D, Qiu Y, Yao X, Zhou Y, Chen C (2015) Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer 67:216–226CrossRef
41.
go back to reference Sarman S, Laaksonen A (2009) Evaluation of the viscosities of a liquid crystal model system by shear flow simulation. Chem Phys Lett 479:47–51CrossRef Sarman S, Laaksonen A (2009) Evaluation of the viscosities of a liquid crystal model system by shear flow simulation. Chem Phys Lett 479:47–51CrossRef
42.
go back to reference J. D. Ferry (1980) "Viscoelastic properties of polymers", John Wiley & Sons J. D. Ferry (1980) "Viscoelastic properties of polymers", John Wiley & Sons
43.
go back to reference Y.-H. Lin (2011) "Polymer viscoelasticity: basics, molecular theories, experiments and simulations", World Scientific Y.-H. Lin (2011) "Polymer viscoelasticity: basics, molecular theories, experiments and simulations", World Scientific
45.
go back to reference Mayoral B, Harkin-Jones E, Khanam P, AlMaadeed M, Ouederni M, Hamilton A, Sun D (2015) Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. RSC Adv 5:52395–52409CrossRef Mayoral B, Harkin-Jones E, Khanam P, AlMaadeed M, Ouederni M, Hamilton A, Sun D (2015) Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. RSC Adv 5:52395–52409CrossRef
46.
go back to reference Zang CG, Zhu XD, Jiao QJ (2015) Enhanced mechanical and electrical properties of nylon-6 composite by using carbon fiber/graphene multiscale structure as additive. J Appl Polym Sci 132CrossRef Zang CG, Zhu XD, Jiao QJ (2015) Enhanced mechanical and electrical properties of nylon-6 composite by using carbon fiber/graphene multiscale structure as additive. J Appl Polym Sci 132CrossRef
Metadata
Title
Polyamide 6/reduced graphene oxide nano-composites prepared via reactive melt processing: formation of crystalline/network structure and electrically conductive properties
Authors
Meng Xiang
Chengjie Li
Lin Ye
Publication date
01-05-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 5/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1765-x

Other articles of this Issue 5/2019

Journal of Polymer Research 5/2019 Go to the issue

Premium Partners